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Using the Jordan-Wigner transformation and continued fractions we calculate rigorously the thermodynamic
quantities for the spié-transverse Ising chain with periodically varying intersite interactions and/or on-site
fields. We consider in detail the properties of the chains having a period of the transverse field modulation
equal to 3. The regularly alternating transverse Ising chain exhibits several quantum phase transition points,
where the number of transition points for a given period of alternation strongly depends on the specific set of
the Hamiltonian parameters. The critical behavior in most cases is the same as for the uniform chain. However,
for certain sets of the Hamiltonian parameters the critical behavior may be changed and weak singularities in
the ground-state quantities appear. Due to the regular alternation of the Hamiltonian parameters the transverse
Ising chain may exhibit plateaulike steps in the zero-temperature dependence of the transverse magnetization
vs transverse field and many-peak temperature profiles of the specific heat. We compare the ground-state
properties of regularly alternating transverse Ising and transv€ksehains and of regularly alternating
guantum and classical chains. Making use of the corresponding unitary transformations we extend the elabo-
rated approach to the study of thermodynamics of regularly alternating%wirisotropicXY chains without
field. We use the exact expression for the ground-state energy of such a chain of period 2 to discuss how the
exchange interaction anisotropy destroys the spin-Peierls dimerized phase.
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I. INTRODUCTORY REMARKS considered in Refd9,10] (see also Refl11] where a model
N - , without field was investigatgd The elaborated general ap-
_The spin; Ising chain in a transverse fieldransverse o504 for calculation of thermodynamic quantitjas] be-
Ising chain is known as the simplest model in the quantumeomes rather tedious fi>2 and the properties of chains of
theory of magnetism. It can be viewed as the oneqarger periods of alternation were not discussed. Other papers
dimensional(1D) spin< anisotropicXY model in a trans- [12,13 are devoted to the 1D anisotropiY model on su-
verse(2) field with extremely anisotropic exchange interac- perlattices, which can be viewed as particular cases of a
tion. By means of the Jordan-Wigner transformation it can beegularly alternating anisotropiXY chain. In Ref.[12] the
reduced to a 1D model of noninteracting spinless fermionsgransfer matrix method was applied to get the excitation
[1-4]. As a result the transverse Ising chain appeared to bspectrum of the Hamiltonian, being a quadratic form of cre-
an easy cas¢b] and a lot of studies on that model have ation and annihilation Bose or Fermi operators, on a 1D su-
emerged up till now. After the properties of the basic skel-perlattice.(This fermionic system is related to the 1D sgin-
eton model were understood various modifications were intransverse anisotropXY model on a superlatticeln Ref.
troduced into the model and the effects of the introduced13] a version of the approach suggested in R&60] was
changes were examined. For example, an analysis of thgpplied to superlattices. Considering as an example the
critical behavior of the chain with an aperiodic sequence ofyround-state dependences of the transverse magnetization vs
interactions was performed in Ref6], an extensive real- transverse field and of the static transverse susceptibility vs
space renormalization-group treatment of the random chaitransverse fieldwhich were examined numerically for an
was reported in Refl7], and a renormalization-group study anisotropicXY chain of period 4 the authors of Ref[13]
of the aperiodic chain was presented in R8f. It should be  observed that these quantities behave differently than for the
remarked, however, that the simpler case of tegularly  isotropic XY model. Contrary to the case of isotropicY
inhomogeneouspin-% transverse Ising chai(in which the  model, for the anisotropiXY model the number of the criti-
exchange interactions between the nearest sites and/or tbael fields at which the susceptibility becomes singular
on-site transverse fields vary regularly along the chain with atrongly depends on the specific values of intersite interac-
finite periodp) still contains enough not explored propertiestion parameters. The quantum critical points in the aniso-
which deserve to be discussed. Moreover, the thermodytropic XY chains in a transverse field with periodically vary-
namic quantities of such a system can be derivgdrously  ing intersite interactionghaving periods 2 and )3were
analytically exploiting the fermionic representation and con- determined using the transfer matrix method in R&#]. It
tinued fractions. was found that for periodic chains the number of quantum
The thermodynamic properties of the regularly alternatingphase transition points may increase and its actual value de-
anisotropicXY chain in a transverse field of period 2 were pends not only on the period of modulation but also on the
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strengths of anisotropy and modulation of exchange interad9,19)). It can be easily proved that the partition functidn
tions. Let us also mention here a paper discussing the energyTr exp (-8H) for two sequences of parametersQ,|, -
gap vanishing in the dimerizgde., period 2 anisotropicXY — and --1,,_1Q, - (or - -:[,Q+1-**) is the same. That means
chain without field[15] and a recent papgf6] which con-  that the fields and the interactions may be interchanged as
tains such an analysis for a nonzero transverse field. Q,— 11 andl,— Q, (or Qy— 1, andl,— Q1) remaining

In the present paper we have obtained a number of differthe partition function unchanged. Really, performing the uni-
ent results for regularly alternating sp%nanisotropicXY tary transformationu:H'gz’l1 exp(iw%s‘,gﬂ) one finds that
chains exploiting a systematic method for the calculation ofEq. (1.1) transformswith the accuracy to the end terms not
the thermodynamic quantities not used in the references citeiehportant for the thermodynamicto
above. This approach is based on exploiting continued frac- N N N N
tions[17] and seems to be a natural and convenient languag . _
for describing regularly alternating chaifSec. I). Consid- BHu*= EI“SZMJ’ EZQ“SHH_E sy + EZQMS%#H
ering the chains of period 3 we examine the generic effects
induced by regular alternation. We discuss, in particular, the 1.2

effect of regular alternation on the energy g&ecs. Il and (1o get the second equality we have renumbered the sites
Iil), the zero-temperature dependences of the transversep_1 which obviously does not change the thermodynam-
magnetization vs transverse field and of the static transverqgs)_ As a resultRRUHU*R? with Rz:HN_l expli(m/2)s]
susceptibility vs transverse field, and the_ temperature qlepelaap to the end effecisis again the trar?sverse Ising c%ain,
dence of the specific hegec. Il). These rigorous analytical g\ yever, with the exchange interaction between the nearest
results completed by numerical calculations of the spin corgjiasn andn+1 being equal td), (or Q,..,) and the trans-
relation functions(Sec. Ill) demonstrate the effect of the | qose field at the sita being equr:';ll td _: orl,).

regular alternation of Hamiltonian parameters on the quan- "\we aiso recall that the unitary tFansforr;atiGl%:ZSBfn
tum phase transition inherent in the séirtransverse Ising changes the sign of the transverse field at sitén the
chain. Although in most cases the critical behavior remaingysmiltonian (1.1), whereas the unitary transformatid,

like in the uniform chain case, for certain sets of the Ham”'Z(ZSﬁ)---(Zsﬁ,) changes the sign of the exchange interaction
tonian parameters weak singularities in the ground-statganveen the sites1 andm+1 in the Hamiltonian(1.1). The

quantities may appear. We compare the results for the rangy mmetry remarks permit to reduce the range of parameters
verse Ising chains with the corresponding ones for the isogy; the study of the thermodynamics of the model.

tropic XY chains in a transverse fielttansverse<X chaing; Finally, let us extend the relation between the anisotropic
moreover, we also compare the ground-state properties of they chain without field and the transverse Ising chesee,
quantum and classical regularly alternating transversg,, example, Refs[19,20) to the inhomogeneous case. Ap-

Ising/XX chains(Sec. Ii). lying the unitary transformatiowv=I1""* exp(i 7/s2,,) to
The results obtained exploiting the continued fraction ap—fhi I-?amiltonian y pet. X TSp10)

proach can be used to examine the thermodynamics of the

regularly alternating spié- anisotropic XY chain without N

field since the latter model is related to a system of two spin- H=2 (211SiShe + 21%SlSh) (1.3

% transverse Ising chains through certain unitary transforma- n=1

tions. We use the exact expression for the ground-state egme gets

ergy of the anisotropiXY chain without field of period 2 to N

demonstrate the effects of anisotropy of exchange interaction

on the spin-Peierls dimerizatiqSecP)I/\/). ’ VHV' = 3 (2137Sh 0+ 11She1) (1.4
We end up this section introducing notations and making =t

some symmetry remarks. We considéy— o spins% on a (with the accuracy to the end terim3his is the Hamiltonian

ring governed by the Hamiltonian of two independent chains. Performing further in Eg4) a
N N /2 rotation of all spins[about thjg axis one finds that
_ RVHV' R, R=ITN, expli(7/2)9] (up to the end ef-
H=2 Q.+ 2 2 " 1.1 N q=1~" qa-.
gl b n% S .3 fecty, is the Hamiltonian of two independent transverse

Ising chainglin the notations used in E@l.1)], where each

[with s\.,=s7(Iy=0) for periodic (open boundary condi-  of the N/2 sites is defined by the sequences of parameters

i . i i i i e Y XYk Y X
tiong]. Herel, is the(Ising) exchange interaction between the 1Y, ol ol - and- X 1Y 1%, o -+ We shall use the

nearest sites andn+1 and{}, is the transverse field at the discussed relation in Sec. IV to study the thermodynamic

siten. We assume that these quantities vary regularly alongroperties of regularly alternating anisotropitY chains
the chain with periocp, i.e., the sequence of parameters inyjithout field (1.3).

8 i:)xamine the thermodynamic properties of the spin model Il. CONTINUED ERACTION APPROACH
Let us extend the “duality” transformatiof3,18] to the To derive the thermodynamic quantities of the spin model

inhomogeneous caséor the Ising chain in a random trans- (1.1) we first express the spin Hamiltonian in fermionic lan-
verse field such a transformation was discussed in Refguage by applying the Jordan-Wigner transformafibr5].
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As a result we arrive at a model of spinless fermions on a N

1
ring governed by the Hamiltonian which can be transformed REY) = ¥ — > Im G,,(E?*+ie), e— +0. (2.7
into the diagonal form, Nz
N 1 Alternatively, R(E?) can be obtained with the help of the
H=> Ak( 77I77k_ ->, Green functions introduced on the basis of the set of equa-
k=1 2 tions for coefficientsV,,, Eq.(2.3). The set of equations for

such Green functiongsuch ag2.6)] corresponds to the uni-
(2.1 tary equivalent spin chaifsee Eq(1.2)] which exhibits the
same thermodynamic properties. Thus, the resulting density
after performing a linear canonical transformation. The coefof statesR(E?) is the same.
ficients of the transformation are determined from the fol- Now we have to calculate the diagonal Green functions
lowing equationg1,3,19,21: Gpn involved into Eq.(2.7). Let us use the continued fraction
representation fo6,,, that follows from Eq.(2.6),

{713} = g {701 = {7 Ml = 0,

Qn—lI n—lq)k,n—l + (Qﬁ + Iﬁ—l - Aﬁ)q)kn + in nq)k,n+1 = 0,

(2.2 G = !
MOE2-02-12 - A - A

in n—lq,k,n—l + (Qﬁ + lﬁ - A&)\Pkn + Qn+lI n\Pk,n+l =0.

2.3 Ao Onalag
n— Q2_2| 2_2 ’
Evidently, we may obtain the thermodynamic quantities of E2-0Q2 -12,- EZ—QS _”|2 -
the spin mode(1.1) having the density of states n-2" n-37".
2 1 ; 2 _ A2 +_ 032
R(EY) = 2 OB = A (2.4 A= RYIE .29
k=1 n+1'n+l

2_02 _12_
E - 00, - 15

. T E*- Q2+2 - |2+1_'-.
since due to Eq(2.1) the Helmholtz free energy per site is n n
given by [Note that the signs of exchange interactions and fields are
o (= E not important for the thermodynamic quantities as it was
f=- —f dEEREZ)In<2 cos ) (2.5 noted above and is explicitly seen from EQ@.8).] For any
BJo 2 finite period of varyingQ), andl, the continued fractions in
. . Eq. (2.8) become periodigin the limit N—c) and can be
2
AS we shall see b_EIOW thg density of stat%(£) (W,h'Ch easily calculated by solving quadratic equations. As a result
contains the same information as a set qu\_qy is easier to |\ get rigorous expressions for the diagonal Green func-
calculate than the values ofy or the (_:oeff|C|entsI>kn, Yy tions, the density of state€.7), and the thermodynamic
On the other hand, we may explo;t Eq@.2 and(2.3)10 gy aniities (2.5) of the periodically alternating spin chain
obtain the deswgd density of stateE?), Eq_. (2.4). We note (1.1). For example, one gets for the internal energyf
that the three-diagonal band set qf _equa_t|(m§) [or (2.3)] +B4f / 3, for the entropys/ k= 824f / 33, or for the specific
strongly resembles the one describing displacements of Pafieatc/k=-B(3 3B)s/k. Assuming thaf),=Q +AQ,, one can
ticles in a nonuniform harmonic chain with nearest neighbor, |55 gptain the transverse magnetizatiotr 7f/9Q) and the
intgractions an®R(E?), Eq.(2.4), plays the role of the distri- i1t transverse susceptibiligf=ame/ 50
bution of the squared phonon frequencies a study of the Following the procedure described above, for the periodi-
phonon density of states in a linear nonuniform system segyqly alternating chains of periods 2 and 3 we find the fol-

for example, Ref[22]). The set of equation&.2) [or (2.3)] lowing result forR(E?):
can be also viewed as the one for determining a wave func-

tion of (spinlesg electron in the 1D nonuniform tight- 1 |Zp_1(E2)|

binding model. . = if AyE)>0
To find the density of stateR(E?) from the set of equa- R(E®) =9 PT \ Az(E%) (2.9
tions (2.2) [or (2.3)] we use the standard Green function 0 otherwise,

approach. Consider, for example, Eg.2). Let us introduce 5 ) 2 2 _
the Green functionss,,=G,(E?) which satisfy the set of WhereZ, 1(E%) and A;p(E%) =-II;Z; (E°-&;) are polynomials
equations of (p—1)th and(2p)th orders, respectively, and<0a;=<---
< ay, are the roots omzp(EZ). Moreover,

(E2 - Qﬁ - Iﬁ—l)Gnm = Qpal n—1Gn—1,m = Q) nGn+l,m = Snm- 5 5 2 2 2 12

(2.6)
Knowing the diagonal Green functiom®,,=G,,(E?) we im- ALED) = 402021212 - (B4 - (02 + Q2+ 12+ 1)
mediately find the density of stat&E?), Eq. (2.4), through 22 22
the relation +Q705+ 17155 (2.10
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FIG. 1. The energy gap vs
transverse field) for transverse
Ising chains of periods Zpanel
(@] and 3 [panels (b)—«(d)] [Q,
=Q0+AQ,, =P AQ=0, 1,=1;
AQ,=AQ; (b), AQy=3AQ, (0),
AQ,=-AQ, (d)]. The bold curves
A vs Q) correspond to the follow-
ing values of parametersAQ,
=0.5,1,1.5[panel(a)]; AQ,=0.5,
AQ4,=0.630,A0,=1 [panel(b)];
AQlZO.S, AQ]_"N‘0848, AQ]_
=15, AQ,=1.921 [panel (0)];
and AQ]_:]., A91z1375, AQ]_
=2 [panel(d)]. The bold curves in
the planeQ)-AQ, indicate the val-
ues of parameters which yield the
zero-energy gapA=0.

(c) AQ,

Z,(E?) =3E*-2(02+ Q3+ Q3+ 15+ 15+ 15E?+ Q205 field, whereas the chains of period 3 may become gapless
92 22 oo oo o5 o o oo either at one, two, three, four, five, or six values of the trans-

+ Q115+ 1115+ Q505+ Q3l3 + 1513+ Q507+ Q31T yerse field depending on the specific set of the Hamiltonian

+1212, parameters. The condition for the vanishing gap follows

from A4(0)=0, Eq.(2.10), [A5(0)=0, Eq.(2.11] and for the
chains of period 2(3) it reads Q.Q0,=%1415,(0Q;0,04
==14l,l5). In fact we have rederived with the help of contin-
+I19E + (Q205+ Q215+ 1215+ Q505+ Q315+ 1515 ued fractions the long known condition for the existenge of

the zero-energy excitations in the inhomogeneous $pin-
+Q§Qi+9§l%+ I%I%)EZ—Qiﬂgﬂg— Iil%l%]z. transverse Isir?g);/ chaif23] which in our nota’gons has trrl)e
(2.11 form

Equations(2.9—2.11) recover the result for the uniform Q10 Q= 14l 1y (2.12
chain if Q,=Q, 1,=I as it should be. The obtained density of
states forp=2, Egs.(2.9) and(2.10),, can be compared with [Notice, that Eq(6) of Ref.[23] does not contain two signs;
the exact calculation for the anisotropi&y chain in a trans- the minus sign follows from the symmetry arguments after
verse field reported in Ref10]. Such a spin chain is repre- performing simple rotations of spin axes. It is important, as
sented by noninteracting spinless fermions with the energiewill be seen below, to have two signs in EQ.12.] Obvi-
A.(qg) given by Eq(2.22 of that paper. The density of states, ously, for periodic chains we have the products of oply
(2.4 has the formR(E?)=(1/2m)3,-./™2,dqs[E?~A%(q)] ~ multipliers in the left-hand side and right-hand side of Eq.
and for the transverse Ising chain of period 2 after a simplé2.12).
integration it transforms into Eq$2.9) and(2.10). For a chain of period 2 with a uniform transverse field Eq.

The density of stateR(E?) Eq. (2.4), yields valuable in- (2.12) yields either one critical field)"=0 if either |, or I,
formation about the spectral properties of the Hamiltonian(or both equals to zero or two critical field@" = [I1,]. If
(1.1). Thus, the gap\ in the energy spectrum of the spin the transverse field becomes regularly varying, .
chain is given by the square root of the smallest rpobf ~ =Q+AQ, AQ>0, there may be either two critical fields
the polynomiald,,(E?). In Fig. 1 we display the dependence Q" =% VAQ?+[l;1,] if AQ<\|l4l5|, or three critical fields
of the energy gap on the transverse fig88] for some chains Q" ={£v2[l115,0} if AQ=\]l4l5|, or four critical fieldsQ
of periods 2 and 3. The vanishing gap indicates quanturF =VAQ?%[l;1,] if AQ>\[l,1,| [see Fig. 1a)]. As a result a
phase transition pointf4]. As can be seen from the data chain of period 2 withAQ < \|1,1,|, as() varies, exhibits two
reported in Fig. 1 the number of such quantum phase transphases: the Ising phagier || < VAQ?+l,1,]) and the para-
tion points for a given period of alternation is strongly pa- magnetic phasgor |Q| > VAQ2?+[141,]). A chain of period 2
rameter dependent. The chains of period 2 may become gapsith AQ=\|l,1,|, asQ varies, also exhibits two phases: the
less either at one, two, three, or four values of the transversising phase(for 0<|Q| <\2|l;1,]) and the paramagnetic

Ae(E?) = 4050502171915 - [E° - (Qf + Q5 + Q5+ 15 +15
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AQ, Ill. THE GROUND-STATE AND THERMODYNAMIC

PROPERTIES

A. The ground-state magnetic properties: Transverse Ising
chain versus transversexX chain

The transverse magnetization and the static transverse
susceptibility for a regularly alternating transverse Ising
chain can be obtained using continued fractions as was ex-
plained in Sec. Il. Such results for some typical chains of
period 3 [which roughly correspond to the parameters
singled out in Figs. )-1(d)] at zero temperature are re-
ported in Fig. 3. Let us compare and contrast the results for
the magnetic properties of the transverse Ising and the trans-
verseXX chains.

We start from the energy gap. It is known that the uniform
transverse Ising chain becomes gapless at critical figld

FIG. 2. Phase diagram of the transverse Ising chain of period 3 i|l|.hThe r?ap ‘?'?C"’I‘VS IIInearIy WP'IS Efg*trarg)sv_ﬁzset field ap-
with 111215 =1, Q1. =0+ A0 5 5 aNdAD, +A0,+A0=0. Ay PrOACTES the critica e “A”f’ e=| : |- e
varies the energy gap vanishes two/four/six times if the set of pa\-/erse chain Is gapless along the critica 'nd |\

rameters is in the dark/gray/light region. The sets of parameterssm' The gap opens linearly while the value of transverse

denoted bya—f are used below to illustrate the dependencéof 1€l exceedsl|. If regular inhomogeneity is introduced into
the ground-state Ising magnetizatiofFig. 5 and the low- the transverseXX chain the critical line splits into several

temperature specific heéig. 7). parts; the gaps open linearly as the transverse field runs out
the critical lines[24]. On the contrary, a regular inhomoge-
neity introduced into the transverse Ising chain may either
phase(for |Q] >\;‘m); moreover, in the Ising phase at only shift the values of critical fields or lead to the appear-
Q=0"=0 the system exhibits a weak singularity in the ance of new critical points. Moreover, the gap decays either
ground-state quantitigsee below. A chain of period 2 with  linearly, A~e¢, or proportionally to the deviation from the
AQ>\1;15], asQ varies, exhibits three phases: the low-field cfitical value squared) ~ €, as can be seen in Fig. (see

aramagnetic phagéor |Q| < VAQ?—[I,1,|), the Ising phase @also below.
gor \;K(Q)T“ﬂ%;fm LJW' ’1 zza|r)1d the hi%}!?_ﬁe|d The energy gap behavior determines the zero-temperature

paramagnetic phagéor || > VAQ2+|1,1,)). Amotivation to ~ transverse magnetization curves for both chains. Transverse

give such names to different phases follows from the behayXX chains exhibit plateaus which can be easily understood

ior of the Ising magnetizatiom* to be discussed below in within the frames of fermionic picture. Indeed, a regularly
Sec. lll. alternating transvers¥X chain corresponds to a system of

For a chain of period 3Q; » =Q+AQ; » 5 AQ,+AQ, free fermions with several energy bands and the transverse

+AQ,4=0) the critical fields follow from two cubic equations f1€ld plays the role of the chemical potential. Transverse
Ising chains do not exhibit plateaus; however, being in the
paramagnetic phases exhibit plateaulike st@msnpare the
curves in Figs. @)-3(c) and Ib)-1(d)]. In the Ising phases
the transverse magnetization shows a rapid change. In the

(2.13  fermionic picture a regularly alternating transverse Ising
chain again corresponds to a system of free fermions with
several energy bands; however, the transverse field does not

each of which may have either one real solution or three regblay the role of the chemical potential any more.

2

(Q +AQ)(Q +AQ) Q" +AQ) £ 141,15=0,

solutions. In Fig. 2 we display the regionsA),-AQ, plane The described behavior of the transverse magnetization vs
for the set of parameters of the transverse Ising chains wittransverse field is accompanied by the corresponding pecu-
[111,15]=1 which yield two(dark region, four (gray region, liarities in the behavior of the static transverse susceptibility

or six (light region values of the critical field. For the set of vs transverse field. Thus, in the cases of the transvérse
parameters at the boundary between dark and @@y and chain the square-root singularities indicate the gapless-to-
light) regions there are thrgéive) critical fields; for the set gapped transitionfFigs. 3j)—3(1)]. In the case of the trans-

of parameters where dark, gray, and light regions meet thergerse Ising chain a linear gap decay produces a logarithmic
are four critical fields. The behavior of the energy gap for allsingularity [Figs. 3d)-3(f)], whereas for a decay propor-
cases can be seen in Figsby-1(d). As a result the chain of tional to the squared deviation from the critical value the
period 3 depending on a relation betwe&f);, AQ,, AQ;  static transverse susceptibility does not diverge containing,
may exhibit either two phasegghe Ising and paramagnetic however, a nonanalytical contribution which causes a loga-
phasey or four phaseqtwo Ising and two paramagnetic rithmic singularity of its second derivatiishort-dashed and
phasey or six phasegthree Ising and three paramagnetic long-dashed-dotted curves in Figgdg-3(f)].

phases Moreover, weak singularities in the Ising phases To end up, we emphasize that for the regularly alternating
may occur. transverseXX chains the number of peculiaritiés.g., in the
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06 -

e

0]

2 -2 0 2 -2 0 2 Q

FIG. 3. The ground-state transverse magnetizadion,g—i and static transverse susceptibility-f,j—| curves for transverse Ising—f)
and transvers¥X (g-1) chains of periop=3.1; 5 3=1, € 5 3=Q+AQ; 5 3 AQ;+AQ,+AQ3=0. (), (d), (9), (j): AQ,=AQ,, AQ;=0 (solid
curvey, AQ,=0.5 (long-dashed curvgsA),=0.6 (short-dashed curvigsA(),=1 (dotted curves (b), (e), (h), (K): AQZ:%AQL AQ4=0
(solid curves, AQ,=0.5(long-dashed curvesA();=0.85(short-dashed curvgsA(),=1.5 (dotted curves AQ,=1.9 (long-dashed-dotted
curves; (), (f), (i), (I): AQ,=-AQ,, AQ,=0 (solid curve3, AQ,;=1 (long-dashed curvesA,=1.35 (short-dashed curvgsAQ,;=2

(dotted curvep

dependencg? vs (1) depends only on the period of alterna- anisotropic/isotropic XY models on 1D superlattices
tion and equals 2 This is not the case for the regularly [13,14,25.
alternating transverse Ising chains: the number of peculiari- . . )

B. The ground-state magnetic properties: Quantum chain

ties cannot exceedpbut may be smaller; the actual number _ :
versus classical chain

of peculiarities and their type essentially depends on the spe-
cific set of the Hamiltonian parameters. Let us also underline To demonstrate the role of quantum effects in the zero-

a similarity of these results with what has been found for theemperature magnetization processes we consider the classi-
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cal counterparts of regularly alternating transverse Ising and Let us turn to the transvers¥X chain (3.2). In the

transverseXX chains(some calculations of the thermody-

ground-state spin configuration the spin componentgyin

namic quantities of the uniform classical spin chains can b@lane are directed arbitrarily but coherently at all sites having
found in Ref.[26]). The classical spin model consists of the valuegm,|=ssin 6, [i.e., py=Pn1=""-=¢ (¢ is an ar-

classical spins(vectory s=(s,0,¢) (0<éd<w and O
< ¢<27 are the spherical coordinates of the gpin a ring

bitrary anglg if 1 <0 or ¢,=no="=d(0<Pp<m), Pps1
=¢pn3=-""=¢+m if 1>0]. An ansatz for the ground-state

which interact with each other and an external field and arenergy per site is again given by E.3) and the angleg,

governed either by the Hamiltonian

N
H=> Qs cos 6,
n=1
N
+ >, 21,8 sin 6, Sin 6,41 COS P, COSPryy (3.1)
n=1
(transverse Ising chajror by the Hamiltonian
N N
H=2 Q,5c0s6,+ >, 21,5 Sin 6, Sin 6,,1C0S (¢, — Pns1)
n=1 n=1
(3.2

(transverseXX chain. In Egs.(3.1) and(3.2) sis the value
of the spin which plays only a quantitative ro(éurther

we put s=1/2) and the sequence of parameters for a

regularly alternating chain of periodp is again
11041505 - 1,Qp11Q415Q5+ 1,0 - . In what follows we re-
strict ourselves to the cade=I, Q,=Q+AQ,, 2, AQ,=0

are determined from Eq3.4). Moreover,m’=s cos ¢, and
Xe=omt/ Q).

For the chain of period 1 from E@3.4) one easily finds
6=0 if w=Q/4s]l|<-1, #=arccos(-w) if ~-1<w<1, and
6= if 1 <w. For the chain of period 2 from Eq3.4) in
addition to four obvious solutions co$,=cos 6,=1 one
gets one more solution

1+(w-8)>?

— 2
cog6, = (w+ d) Tt (0t 9P

. olt(e+d)?
005202—(w (5) 1+(w_5)21

AQ

6= —+

49/l

if |w?—8%|<1. For the chain of period 3 E@3.4) has again

obvious solutions cdsf; =cog 6,=cog #;=1; another solu-
tion existing at a certain range of the transverse field can be

(3.5

which has already been discussed in some detail above. Og§und numerically[see Figs. #)-4()]. The described ana-
goal is to examine the effect of regular inhomogeneity on thaytical calculations reproduce the results obtained earlier nu-
ground-state properties of the classical transverse Ising anglerically for some chains of periods 2 anddashed curves

transverseXX chains.

in Figs. §a) and &b) of Ref. [24]).

Consider at first the transverse Ising chain. One can easily |n Figs. 4a)-4(i) we display the obtained dependences of
construct the ground-state spin configuration and the corrghe ground-state magnetizatiomg, m* and static transverse

sponding ground-state energy ansatz. According to(&4)

susceptibility x* on the transverse field for several classical

to minimize the ground-state energy one should place aliransverse IsingX chains of period 3the results for corre-

spins inxz plane[i.e., ¢p=n1=--=0(m) if 1<0 or ¢,
=bni=""=0(m), ¢ni1=niz="--=m(0) if 1>0]. More-

sponding quantum chains are shown in Fig.I8 contrast to
the quantum case, the ground-state static transverse suscep-

over, the angles), are determined to minimize the sum of tibility )Z of the classical chains remains always finite as the
the contribution coming from the interaction with the trans-transverse field) varies and hence the classical chains do
verse field and of the contribution coming from the intersitenot exhibit any ground-state phase transitions driver{by
interaction taking into account the period of inhomogeneity.However, a regularly alternating classical chain similar to its
Thus, for the chain of period, an ansatz for the ground-state quantum (XX) counterpart may exhibit plateaus in the
energy per site reads ground-state dependence transverse magnetizatibrvs
transverse field) [compare long-dashed-dotted curves in

E(Oy, .- .6p) _ §§ 0,c0s 6, - %229 sin 6, sin 6.1, Figs. 4b) (classical chaipand 3h) (quantum chaipwhich
N Pro1 o J— have a plateau rﬁzzé]. Obviously, asn? remains constant
3.3 with varying (), the static transverse susceptibility is zero
' [long-dashed-dotted curves in Figes]. Moreover,ni(m, ),
and the angleg, are determined from the set of equations n=1,2,3, inthis region is zerdFig. 4(h)] and the stable
) E(6 6) ground-state spin configuration &=06,,1=m, 6,:,=0 [see
— =L -on=1,... p. (3.4)  Fig. 41)]. The Ising magnetizatiom” decays as the system
d b N runs out the Ising phase according to the power law,

Substituting the solution of Eq3.4) (which yields the low- | ~©[°, with g=3.
est ground-state energynto Eq. (3.3) we get the ground-

state energy of the chain. Now the ground-state on-site mag-
netizations are given byn’=s cos@,, m;=s sin ,c0S ¢,. Let us have a closer look at the quantum phase transitions
We can also find the ground-state on-site static transversa regularly alternating transverse Ising chains discussing in

susceptibility x%=am/ oQ). some detail the critical behavior. For such a chain of pepiod

C. Quantum phase transitions
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|| {7 S

1 n L

0 2 -2 0 2 Q

)]

0 | 1 H

2 0 2 2

FIG. 4. The ground-state transverse magnetizate), Ising magnetizationg—i), and static transverse susceptibility-f) curves for the
classical transverse IsingX chains of periotp=3.1; ; 5=-1, Q3 5 3= Q+AQ; 5 3 AQ;+AQ,+A05=0. (), (d), (9): AQ,=A0,, AQ;=0
(solid curves, AQ,=0.5 (long-dashed curvesA();=0.6 (short-dashed curvgsAQ,=1 (dotted curves (b), (e), (h): AQZ:%AQb AQ4

=0 (solid curvey, AQ;=0.5 (long-dashed curvesA(),=0.85 (short-dashed curviesAQ;=1.5 (dotted curvep AQ;=1.9 (long-dashed-
dotted curvep (c), (f), (i): AQ,=-AQ,, AQ,=0 (solid curves, AQ,;=1 (long-dashed curvesA,=1.35(short-dashed curvigsAQ,=2

(dotted curvep We also show the ground-state spin configuratiend,, 65 (the corresponding curves are denoted by 1, 2o8the chains

with AQZ:%Aﬂl [see panelgb), (e), (h)] andAQ;,=0.85(j), AQ;=1.5(k), AQ,=1.9(]) as ) varies.

the quantum phase transition points are determined by Egqvas found many years ad@3] it was not discussed in the
(2.12. The effects of regular alternation on the number andcontext of the quantum phase transition theory. In particular,
position of the quantum phase transition points in the casean important questiomow the gap vanishes as the set of
p=2 andp=3 were analyzed in Sec. Il. Although E@.12 parameters becomes critical was not considered in [R8F.
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Below we show that two types of critical behavior are pos-[28]) for rather long chains of several thousand sites. Know-
sible: one as it occurs for the second-order phase transitioing (s's,) we can obtain the on-site magnetization?
(in Ehrenfest's sengeand another one as it occurs for a =lim,_.(ssy,,). Assuming that(sisq,,) —(sp){Sn.p,) de-
weaker singularity (the fourth-order phase transition in cays as(rp)~""exp (-rp/&v) if r—o we can also find the
Ehrenfest's sengeThese findings are confirmed by numeri- correlation lengthe* and the power-law exponent. In our
cal computations of the two-site spin correlation functions. cajculations fop=3 we consider chains witN=2100, take
First we analyze how the gap vanishes as the set*of P&r=500,rp=999 to determin@‘nﬂ andrp=60, ...,360 to de-
rameters becomes critical for the cape2 when (' termine & and y*. Our findings are collected in Fig. 5. To
=+\VAQ?%|l4l,|. Equation(2.10) yields illustrate the critical behavior of the order parameter in detail
) s we also consider a chain of period 2 with|=[l,|=1, Q, ,
Q°-Q7) 3.6 =Q+1 taking N=2000,4000,5400n=N/4, rp=N/2. The
5 , B3\ ' zero-temperature dependendeg| vs Q for this chain are
2( Q7+ A0+ 5 reported in Fig. 6.
As can be seen from Figs. 5 and 6 the behavior of the
=e—0 andQ' #0 Eq.(3.6) suggesta\%(Q) ~ &, Ising maglfneti.zatiormX (which plays the r_ole of the .order
parameter indicates the different phaséksing phase ifm*
T%O or paramagnetic phase 1if*=0) and the phase transi-

A%Q) =

If |Q-Q°
i.e., the energy gap vanishes lineaibge Fig. (a)]. A linear
decay of the energy gap can be also seen in many cases . .
Figs. Ab)-1(d) for chains of period 3. The linearly vanishing tions b_etween_ _the_m. For a ?et of pa_\rameters which ylelds
gap corresponds to the square-lattice Ising model universa—eak singularitiegi.e., m"=0 in the I_sn_]g p_hase, see Figs.
ity class for critical behavior. In particular, owing to such a °(P): 3©), 3©), 6@), and €b)] the finite-size effects are

decay ofA the ground-state energy per site in the vicinity of strong and the finite-chain result feimagnetization tends to
Q" has the form zero very slowly with increasindyl [compare data for differ-

entN in Fig. 6b)]. For the second-ordéfourth-ordey quan-

o 1 (Va2 f(E?) tum phase transition points the critical behavior is given by
eo:‘J dEEZR(EZ):——f_ E oy m~[Q" -Q# with B=2(8=3) [compare Figs. @) and
0 P e VES- 6(b)]. The appearance/disappearance of the Ising magnetiza-
+ analytical with respect te” terms. (3.7 tion is accompanied by a divergence of the correlation length
&=|Q-Q"|™ with v=1(v=2) for the second-ordegfourth-

Here the first term is a contribution of the lowest energyorden quantum phase transition poirf&igs. 5g)-5(1)]. Tak-
band and the explicit expression fé(E?) is not important  ing into account the values of the exponent characterizing the
for the analysis of nonanalytical behavior @s>0. The first energy gap behavior we conclude that the relaxation time
term in Eq.(3.7) is proportional toe” In e and as a result the  scales like the first power of the correlation length, i.e., the
zero-temperature dependencemfand x* on () contains the  dynamic exponenz=1, for both the second-order and the
nonanalytical termgQ-Q)In [Q-Q°| and IHQ-Q°|, re-  fourth-order quantum phase transitions Q" the xx spin
spectively. o correlation functions show power-law decay with the expo-
Let us turn to the casp=2 with AQ=\[l3],| when we  nent y*=3 for both the second-order and the fourth-order
have three critical field$)" ={\2|l,I,|,0} and consider the quantum phase transitiofiEigs. Sm)-5(r)]. Finally, the re-
behavior of A(Q) in the vicinity of Q"=0, i.e.,, asQQ—0.  sults for spin correlation functions at special values of the
From Eq.(3.6) one finds that\?(Q2) ~ €*. Repeating the cal- transverse field), i.e., when one on-site field equals zero,
culation of the ground-state enerfgee Eq(3.7)] for such a coincide with the analytical predictions obtained using the
decay ofA one finds thaie, contains the terme* In e and  three-site cluster Hamiltonian eigenvectdgfer a chain of
hence the system exhibits the fourth-ordar Ehrenfest's period 2 the corresponding calculations are given in Ref.
sensg quantum phase transition 8 =0 which is character- [29]). For example, for the chain of period 3 with=1,=15
ized by a logarithmic divergence of the second derivative o1, AQ;=1, AQ,=0, AQ;=-1 at Q=-1 we have found
the susceptibilitys®y?/ Q2. (For an example of a fourth- |rrf{|:%,|rrf2‘|z0.417,|m’3‘|z0.331[see Fig. 5a)] whereas for
order thermal phase transition see Rgf7].) For p=3 the  such a chain witlAQ);=2, AQ,=0, AQ;=-2 atQ=-2 we
dependence\ () ~ € [see Figs. ()-1(d)] may occur for  have found|m|=3,|ms~0.267 and|mj~0.175 [see Fig.
the sets of parameters at the boundaries between differestf)]. It should be noted that the Ising magnetization at the
regions in Fig. 2(e.g., at the pointb, ¢, ande). Such sys- sites with zero transverse fields has its maximal vajue
tems again show the fourth-order quantum phase transitioRrrobably the most spectacular feature of the Ising chain with
behavior while approaching the corresponding critical fieldsregularly alternating transverse field is the reentrant behavior
To discuss further the quantum phases which occur as thgith varying Q nicely seen in Figs. ®)-5f). The appear-
transverse field varies we examine the spin correlation funcance of the paramagnetic phase at intermediate values of the
tions (s;s1.,). Unfortunately, we cannot obtain the spin cor- transverse field wher magnetization is zero armlmagne-
relation functions of a regularly alternating transverse Isingization is almost constant can be associated with the follow-
chain using the continued fraction approach which is reing classical picture. Assume, for examppes2 and(Q=0;
stricted to the quantities that can be expressed through thteen owing to the regularly varying on-site transverse fields
density of stateg2.4). However, the spin correlation func- +AQ with largeAQ all on-site magnetizations are directed in
tions can be determined numericallsee, for example, Ref. +z direction in the spin space. Naturally, this picture may
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FIG. 5. The ground-stat® magnetizationmx:%(|n‘ﬁ1‘|+\m§\+|n’§|) (a—f), inverse correlation length #f (g-I), and y* (m-r) for the
transverse Ising chain of period 3 with|=|1,/=(13 =1, Q1 5 5=Q+AQ; 5 3 AQ;+AQ,+A03=0,A0,=1,A0,=0(Q" ={+1.329) (a,9,m);
A0 =1, AQ,~0.292 (Q° ~{-1.355,0.678,1.533 (b,h,n; AQ,=(Z)1°P~1374,A0,=0 (Q" ={#0.794,+1.58)) (c,i,0); AQ,=(Z)
~1.374, AQ,=-1 (Q'~{-1.574,-1.020,-0.348,1.3p7 (d.j,p); AQ;=2, AQ,~-1575 (O ~{-2.107,-1.874,0.102,1.054,1.272
(e,k,0; andAQ,=2, A0,=0 (Q" ~{+0.254, +1.861, +2.115 (f,I,r). Connecting curves are guides to the eye. The taken sets of parameters
are in correspondence with the poirfés-f) in Fig. 2.

play only an auxiliary role for the considered quantum sys4ing d=2, v=1 one getsx=0, i.e., only a logarithmic diver-
tems. gence in the dependengé vs (), whereas for more rapidly
Finally we note that our results are in agreement with thedecaying energy gap wherr2 one findsa=-2, i.e.,x* does
scaling relations in the theory of conventiori@mperature- not diverge at)” (and only its second derivative exhibits a
driven) phase transitiong30]. Thus, the quantum phase tran- logarithmic peculiarity.
sition in dimensiond=1 corresponds to the thermal phase
transition in dimensiord+z=2, the exponent which char-
acterizes the divergence of the correlation lengtk |T
-T,™” characterizes the decay of the energy dgap |Q We turn to a discussion of the effects of regular alterna-
-Q'|”, and the exponent characterizing the divergence of tion on the temperature dependence of the specific heat. The
the specific heat~ |T—-T,|™* characterizes the divergence of low-temperature behavior of this quantity is determined by
the transverse susceptibility?~|Q—Q°|% Moreover, a the fact whether the system is gapped or gapless. Thus, the
number of scaling relation@vhich do not account for loga- zero-energy excitations immediately produce a linear depen-
rithmic divergenceshold. For example, 2a=dv. Substitut- dence of the specific heat on temperature. As a result the

D. Temperature behavior of the specific heat

it i

02

(a) i 0 1 o (o 0.04 0.08 (¢ 1412 1414 Q

FIG. 6. The ground-state sublattizemagnetizationgmi|, j=1,2 (triangle3 and rrr‘=%(|m§\+|r’n’2‘|) (squares, diamonds, circhefor the
transverse Ising chain of period 2 with|=|l,/=1, Q; ,=Q*1. Connecting curves in pané) are guides to the eye. We also report the
results for the dependence vs Q in the vicinity of the critical pointd)" =0 (b) andQ" =12 (c) [squares, diamonds, circles correspond to
data forN=2000,4000, 5400, respectively, solid lines represent depender@&é (b) and ~(y2-0Q)1/8 (c)].

066112-10



REGULARLY ALTERNATING SPIN-% ANISOTROPIC.. PHYSICAL REVIEW E 69, 066112(2004)

N e

0.1 0.1

(d) ®

FIG. 7. The low-temperature behavior of the specific heat for the transverse Ising chain of period|B|with=|l5/=1, Q5 5=Q
+AQl,2,3 AQl+A92+AQ3:o, Alel, AQZZO (a), AQ]_:]., AQZQOZQZ (b), AQ]_Q“'1374, AQZZO (C), Ale1.374,AQZZ_1 (d),
AQ;=2, AQ,~-1.575(€), andAQ,=2, AQ,=0 (f).

low-temperature behavior of the specific heat indicates the Moreover, we may use the obtained densities of states
guantum phase transition points that can be seen in Fig. 7 if2.9—2.11) to find the thermodynamic quantities of some
complete agreement with the outcomes which follow fromregularly alternating anisotropXY chains. Thus, the aniso-
the behavior of thexx spin correlation functions shown in tropic XY chain of period 2 is unitary equivalent to two dif-
Fig. 5. Moreover, we notice that the regular alternation mayferent transverse Ising chains both of period 1 and as a result
produce many-peak structure of the temperature profiles of

the specific heatFig. 7). 1 1 ; 2
2o T ez if Ax(E9) >0
R(E9) = W\Axy(E )
IV. ANISOTROPIC XY CHAIN WITHOUT FIELD: 0 otherwise
SPIN-PEIERLS DIMERIZATION
1 .
As a byproduct of the study of regularly alternating trans +22m A (B?) y

verse Ising chains we obtain the thermodynamic quantities of X )
regularly alternating anisotropiXY chains without field 0 otherwise,
(1.3). Really, using the unitary transformations discussed at
the end of Sec. | we can state that the Helmholtz free energy A psB)==[E2= (17 - 152E2- (11 +157]. (4.2

of the regularly alternating anisotropXY chain without

field (1.3) defined by a sequence of parameters(Note that for the isotropic casE=1y=I,, 153=13=I,, Eq.

Y0 SIS0 - 9% -+ is given by Eq.(2.5) with  (4.2) yields the result obtained in RgR4] [Eqs.(9)«1) of

R(E?), Eq.(2.7), and the diagonal Green functions involved that pape}; in the anisotropic case E¢.2) agrees with the

into Eq.(2.7) are determined as follows: result reported in Ref[10].) The anisotropicXY chain of
period 3 after performing the above mentioned unitary trans-
G. = 1 formations is equivalent to two identical transverse lIsing
MOBZ- X 212 AL - A chains of period 3 and, therefor®E?) is given by Egs.
(2.9 and (2.11) after the substitutiod); — 13, 1,—13, Q,
[y .2x 2 — 1%, I,— 15, Q3— 13, andl;— 1. Let us also note that the
AL= n2 -l Y 2ix 2 , anisotropicXY chains of period 46) are unitary equivalent
R e Ih-aln-g to two different transverse Ising chains of period3} and
E2- 1% %= 1,2~ hence after simple substitutions Eq8.9) and (2.10) [Egs.
(2.9 and(2.11)] yield the thermodynamic properties of such
. |¥2|)r§+12 chains.
Ap= Y 2% 2 . (4D Let us use the ground-state energy per seg=
E2- 1%, 2 - 1,2~ N2 n+3 -2[5 dEE?R(E?) of the anisotropicXY chain of period 2 to

n+2 2_1x 2_1y 2
E*- ~ s

n+3 examine the effects of the exchange interaction anisotropy on
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€(5)-€(0)
0.1

0.05 FIG. 8. The total ground-state energy

per site £(6) vs dimerization parametef (a
=0.5, from bottom to top vy
=0,0.025,0.05,0.1,0.15,0.2,0.4), the dimer-
ization paramete®” vs « (from right to left
=0,0.025,0.05,0.1,0.15,0.2,0.4), the dimer-
ization paramete®” vs. y [from top to bottom
a=0.4,0.5,0.6; the meaning of the characteristic
& ¥ values of the anisotropy parametex, s, vc
. (denoted fora=0.5 is explained in the main
. text] (c), and the phase diagram in the plane
04 N -y [in the regionA(C) the dimerized(uniform)
. 04 phase occurs; in the regiotig, B, both phases
are possible although in the regi@®y(B,) the
dimerized(uniform) phase is favorablgd).

52

S
A =

Tom—
!

0 | I ! 0
(C) 0 Yo %Y 04 Y (d) 0.5 1.0 o

the spin-Peierls dimerization inherent in the isotropl¥  ized phase occurs according to the first-order phase transition
chain [31,32. For this purpose we assume in Ed.2) I} scenario. The corresponding phase diagram is shown in Fig.
=(1+5)(1+y), H=(1+8)(1-7y), 13=(1=-5)(1+y), 1¥=(1-9) 8(d) where we indicate the region of stability of the dimer-
X(1-7y) where O< <1 is the dimerization parameter and ized (A) and uniform(C) phases as well as the metastable
O0<y=1 is the exchange interaction anisotropy parametefegion(regionsB, and B,) where both phases may coexist.
We consider the total energy per site5) and its dependence |t is interesting to compare the described effects of the
on é. £(6) consists of the magnetic pagj(d) and the elastic exchange interaction anisotropy on the spin-Peierls dimer-
partad®. Let us recall that in the isotropic limig=0 the total  ized phase with the effects of the transverse field on the
energy&(6) exhibits a minimum at a nonzero value of the spin-Peierls dimerized phage4,32. Similar to the aniso-
dimerization parametes #0 which is a manifestation of tropy vy the transverse fiel@) destroys the dimerized phase
lattice instability with respect to spin-Peierls dimerization according to a first-order phase transition scenario. However,
[31]. In the other limiting casey=1 the magnetic energy the value of the dimerization parametéf remains un-
does not depend ofiand hence the uniform lattice is stable. changed a$) increases up té).

In Fig. 8a) one can see how the behavior&) vs & varies
as vy increases from 0 to 0.4 for=0.5. At y=0 the total
energy&(8) exhibits a minimum at a nonzero value of dimer-
ization parametes” # 0. As v increases the dependence re- In this work we have analyzed in some detail the ground-
mains qualitatively the same with, however, slightly decreasstate and thermodynamic properties of regularly alternating
ing value of§" [see Figs. &) and §c)]. At a certain value of spin—% transverse Ising chains and anisotropy’ chains
anisotropy parametey, an additional minimum ab=0 ap-  without field. Due to the Jordan-Wigner mapping and the
pears. Both minima are separated by a maximum, and theontinued fraction approach we can calculate the thermody-
minimum ats&" # 0 remains the deeper one. At the value of namic quantities rigorously analytically. For certain values of
¥s(>7va) the minima have the same depth and with furtherparameters we can also calculate the ground-state spin cor-
increase ofy the minimum at6=0 becomes the deeper one. relation functions. For other values of parameters we have
If y exceedsyc(>1yg) the minimum for a nonzero dimeriza- calculated the spin correlation functions numerically for long
tion parameter disappears. In Figh8one can see the be- chains consisting of a few thousand sites. We have shown
havior of 8" asy varies from 0 to 0.4 for different’s [solid  how the ground-state properties of regularly alternating clas-
curves; the dashed curves show the behavior of the maxsical transverse IsingdX chains can be examined. The main
mum in the dependend&d) vs §]; in Fig 8(c) one can see results obtained are as follows. First, we have examined the
the dependence af on y for «=0.4,0.5,0.6. The bold dots effects of regular alternation on quantum phases and quan-
in the curves in this panel correspond to the characteristitum phase transitions in the transverse Ising chain. Owing to
values of the anisotropy parametex< yg<yc discussed regularly alternating parameters the number of quantum
above. The effect of the anisotropy on the spin-Peierls dimerphase transition may increadeut never exceedspvherep

V. CONCLUDING REMARKS

066112-12



REGULARLY ALTERNATING SPIN-% ANISOTROPIC.. PHYSICAL REVIEW E 69, 066112(2004

is the period of alternationand the critical behavior remains 17/7/01, 436 UKR 17/1/02, and 436 UKR 17/17)0®.D.
as in the uniform chain, however, a weaker singularity mayacknowledges the kind hospitality of the Magdeburg Univer-
also appear. Second, we have demonstrated how the plateasity in the autumn of 2003 when the paper was completed.
in the ground-state magnetization curves for the classicarhe paper was partly presented at the 19th General Confer-
regularly alternating transverse IsiigX chains may ence of the EPS Condensed Matter Division held jointly with
emerge. Third, we have shown how the exchange interactio@MMP 2002—Condensed Matter and Materials Physics
anisotropy destroys the spin-Peierls dimerization inherent iiBrighton, UK, 2003, at the 28th Conference of the Middle
the spin% isotropicXY chain. The performed study provides European Cooperation in Statistical Physi&aarbriicken,
a set of reference results which may be useful for underGermany, 2008 and at the International Workshop and
standing more complicated quantum spin chains. Seminar on Quantum Phase TransitigBsesden, Germany,
2003. O.D. expresses appreciation to the Institute of Physics
for the support in participation. O.D. and O.Z. thank the
organizers of the MECO conference for the support. O.D. is
The present study was partly supported by the DFG ovegrateful to the Max-Planck-Institut fir Physik Komplexer
a few past years a number of tim@3roject Nos. 436 UKR  Systeme for the hospitality in Dresden.
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