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Using the Jordan-Wigner transformation and continued fractions we calculate rigorously the thermodynamic
quantities for the spin-12 transverse Ising chain with periodically varying intersite interactions and/or on-site
fields. We consider in detail the properties of the chains having a period of the transverse field modulation
equal to 3. The regularly alternating transverse Ising chain exhibits several quantum phase transition points,
where the number of transition points for a given period of alternation strongly depends on the specific set of
the Hamiltonian parameters. The critical behavior in most cases is the same as for the uniform chain. However,
for certain sets of the Hamiltonian parameters the critical behavior may be changed and weak singularities in
the ground-state quantities appear. Due to the regular alternation of the Hamiltonian parameters the transverse
Ising chain may exhibit plateaulike steps in the zero-temperature dependence of the transverse magnetization
vs transverse field and many-peak temperature profiles of the specific heat. We compare the ground-state
properties of regularly alternating transverse Ising and transverseXX chains and of regularly alternating
quantum and classical chains. Making use of the corresponding unitary transformations we extend the elabo-
rated approach to the study of thermodynamics of regularly alternating spin-1

2 anisotropicXY chains without
field. We use the exact expression for the ground-state energy of such a chain of period 2 to discuss how the
exchange interaction anisotropy destroys the spin-Peierls dimerized phase.

DOI: 10.1103/PhysRevE.69.066112 PACS number(s): 05.50.1q, 75.10.2b

I. INTRODUCTORY REMARKS

The spin-12 Ising chain in a transverse field(transverse
Ising chain) is known as the simplest model in the quantum
theory of magnetism. It can be viewed as the one-
dimensional(1D) spin-12 anisotropicXY model in a trans-
verseszd field with extremely anisotropic exchange interac-
tion. By means of the Jordan-Wigner transformation it can be
reduced to a 1D model of noninteracting spinless fermions
[1–4]. As a result the transverse Ising chain appeared to be
an easy case[5] and a lot of studies on that model have
emerged up till now. After the properties of the basic skel-
eton model were understood various modifications were in-
troduced into the model and the effects of the introduced
changes were examined. For example, an analysis of the
critical behavior of the chain with an aperiodic sequence of
interactions was performed in Ref.[6], an extensive real-
space renormalization-group treatment of the random chain
was reported in Ref.[7], and a renormalization-group study
of the aperiodic chain was presented in Ref.[8]. It should be
remarked, however, that the simpler case of theregularly
inhomogeneousspin-12 transverse Ising chain(in which the
exchange interactions between the nearest sites and/or the
on-site transverse fields vary regularly along the chain with a
finite periodp) still contains enough not explored properties
which deserve to be discussed. Moreover, the thermody-
namic quantities of such a system can be derivedrigorously
analyticallyexploiting the fermionic representation and con-
tinued fractions.

The thermodynamic properties of the regularly alternating
anisotropicXY chain in a transverse field of period 2 were

considered in Refs.[9,10] (see also Ref.[11] where a model
without field was investigated). The elaborated general ap-
proach for calculation of thermodynamic quantities[10] be-
comes rather tedious ifp.2 and the properties of chains of
larger periods of alternation were not discussed. Other papers
[12,13] are devoted to the 1D anisotropicXY model on su-
perlattices, which can be viewed as particular cases of a
regularly alternating anisotropicXY chain. In Ref.[12] the
transfer matrix method was applied to get the excitation
spectrum of the Hamiltonian, being a quadratic form of cre-
ation and annihilation Bose or Fermi operators, on a 1D su-
perlattice.(This fermionic system is related to the 1D spin-1

2
transverse anisotropicXY model on a superlattice.) In Ref.
[13] a version of the approach suggested in Ref.[10] was
applied to superlattices. Considering as an example the
ground-state dependences of the transverse magnetization vs
transverse field and of the static transverse susceptibility vs
transverse field(which were examined numerically for an
anisotropicXY chain of period 4) the authors of Ref.[13]
observed that these quantities behave differently than for the
isotropic XY model. Contrary to the case of isotropicXY
model, for the anisotropicXY model the number of the criti-
cal fields at which the susceptibility becomes singular
strongly depends on the specific values of intersite interac-
tion parameters. The quantum critical points in the aniso-
tropic XY chains in a transverse field with periodically vary-
ing intersite interactions(having periods 2 and 3) were
determined using the transfer matrix method in Ref.[14]. It
was found that for periodic chains the number of quantum
phase transition points may increase and its actual value de-
pends not only on the period of modulation but also on the
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strengths of anisotropy and modulation of exchange interac-
tions. Let us also mention here a paper discussing the energy
gap vanishing in the dimerized(i.e., period 2) anisotropicXY
chain without field[15] and a recent paper[16] which con-
tains such an analysis for a nonzero transverse field.

In the present paper we have obtained a number of differ-
ent results for regularly alternating spin-1

2 anisotropicXY
chains exploiting a systematic method for the calculation of
the thermodynamic quantities not used in the references cited
above. This approach is based on exploiting continued frac-
tions [17] and seems to be a natural and convenient language
for describing regularly alternating chains(Sec. II). Consid-
ering the chains of period 3 we examine the generic effects
induced by regular alternation. We discuss, in particular, the
effect of regular alternation on the energy gap(Secs. II and
III ), the zero-temperature dependences of the transverse
magnetization vs transverse field and of the static transverse
susceptibility vs transverse field, and the temperature depen-
dence of the specific heat(Sec. III). These rigorous analytical
results completed by numerical calculations of the spin cor-
relation functions(Sec. III) demonstrate the effect of the
regular alternation of Hamiltonian parameters on the quan-
tum phase transition inherent in the spin-1

2 transverse Ising
chain. Although in most cases the critical behavior remains
like in the uniform chain case, for certain sets of the Hamil-
tonian parameters weak singularities in the ground-state
quantities may appear. We compare the results for the trans-
verse Ising chains with the corresponding ones for the iso-
tropic XY chains in a transverse field(transverseXX chains);
moreover, we also compare the ground-state properties of the
quantum and classical regularly alternating transverse
Ising/XX chains(Sec. III).

The results obtained exploiting the continued fraction ap-
proach can be used to examine the thermodynamics of the
regularly alternating spin-1

2 anisotropic XY chain without
field since the latter model is related to a system of two spin-
1
2 transverse Ising chains through certain unitary transforma-
tions. We use the exact expression for the ground-state en-
ergy of the anisotropicXY chain without field of period 2 to
demonstrate the effects of anisotropy of exchange interaction
on the spin-Peierls dimerization(Sec. IV).

We end up this section introducing notations and making
some symmetry remarks. We considerN→` spins 1

2 on a
ring governed by the Hamiltonian

H = o
n=1

N

Vnsn
z + o

n=1

N

2Insn
xsn+1

x s1.1d

[with sN+1
a =s1

asIN=0d for periodic (open) boundary condi-
tions]. HereIn is the(Ising) exchange interaction between the
nearest sitesn andn+1 andVn is the transverse field at the
site n. We assume that these quantities vary regularly along
the chain with periodp, i.e., the sequence of parameters in
Eq. (1.1) is V1I1V2I2¯VpIpV1I1V2I2¯VpIp¯. Our goal is
to examine the thermodynamic properties of the spin model
(1.1).

Let us extend the “duality” transformation[3,18] to the
inhomogeneous case(for the Ising chain in a random trans-
verse field such a transformation was discussed in Refs.

[9,19]). It can be easily proved that the partition functionZ
=Tr exp s−bHd for two sequences of parameters̄VnIn¯

and ¯In−1Vn¯ (or ¯InVn+1¯) is the same. That means
that the fields and the interactions may be interchanged as
Vn→ In−1 and In→Vn (or Vn→ In and In→Vn+1) remaining
the partition function unchanged. Really, performing the uni-
tary transformationU=pp=1

N−1 exp sipsp
xsp+1

y d one finds that
Eq. (1.1) transforms(with the accuracy to the end terms not
important for the thermodynamics) into

UHU+ = o
n=1

N

Insn+1
z + o

n=1

N

2Vnsn
ysn+1

y =o
n=1

N

Insn
z + o

n=1

N

2Vn+1sn
ysn+1

y

s1.2d

(to get the second equality we have renumbered the sitesn
→n−1 which obviously does not change the thermodynam-
ics). As a resultRzUHU+Rz+ with Rz=pq=1

N exp fisp /2dsq
zg

(up to the end effects) is again the transverse Ising chain,
however, with the exchange interaction between the nearest
sitesn andn+1 being equal toVn (or Vn+1) and the trans-
verse field at the siten being equal toIn−1 (or In).

We also recall that the unitary transformationFm=2sm
x

changes the sign of the transverse field at sitem in the
Hamiltonian (1.1), whereas the unitary transformationBm
=s2s1

zd¯ s2sm
z d changes the sign of the exchange interaction

between the sitesm andm+1 in the Hamiltonian(1.1). The
symmetry remarks permit to reduce the range of parameters
for the study of the thermodynamics of the model.

Finally, let us extend the relation between the anisotropic
XY chain without field and the transverse Ising chain(see,
for example, Refs.[19,20]) to the inhomogeneous case. Ap-
plying the unitary transformationV=pp=1

N−1 expsipsp
ysp+1

z d to
the Hamiltonian

H = o
n=1

N

s2In
xsn

xsn+1
x + 2In

ysn
ysn+1

y d s1.3d

one gets

VHV+ = o
n=1

N

s2In
xsn

zsn+2
z + In

ysn+1
x d s1.4d

(with the accuracy to the end terms). This is the Hamiltonian
of two independent chains. Performing further in Eq.(1.4) a
p /2 rotation of all spins about they axis one finds that
RyVHV+Ry+, Ry=pq=1

N exp fisp/2dsq
yg (up to the end ef-

fects), is the Hamiltonian of two independent transverse
Ising chains[in the notations used in Eq.(1.1)], where each
of the N/2 sites is defined by the sequences of parameters
¯In+1

y In+2
x In+3

y In+4
x

¯ and¯In
yIn+1

x In+2
y In+3

x
¯. We shall use the

discussed relation in Sec. IV to study the thermodynamic
properties of regularly alternating anisotropicXY chains
without field (1.3).

II. CONTINUED FRACTION APPROACH

To derive the thermodynamic quantities of the spin model
(1.1) we first express the spin Hamiltonian in fermionic lan-
guage by applying the Jordan-Wigner transformation[1–5].
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As a result we arrive at a model of spinless fermions on a
ring governed by the Hamiltonian which can be transformed
into the diagonal form,

H = o
k=1

N

LkShk
†hk −

1

2
D ,

hhk
†,hqj = dkq, hhk,hqj = hhk

†,hq
†j = 0, s2.1d

after performing a linear canonical transformation. The coef-
ficients of the transformation are determined from the fol-
lowing equations[1,3,19,21]:

Vn−1In−1Fk,n−1 + sVn
2 + In−1

2 − Lk
2dFkn + VnInFk,n+1 = 0,

s2.2d

VnIn−1Ck,n−1 + sVn
2 + In

2 − Lk
2dCkn + Vn+1InCk,n+1 = 0.

s2.3d

Evidently, we may obtain the thermodynamic quantities of
the spin model(1.1) having the density of states

RsE2d =
1

N
o
k=1

N

dsE2 − Lk
2d s2.4d

since due to Eq.(2.1) the Helmholtz free energy per site is
given by

f = −
2

b
E

0

`

dEERsE2dlnS2 cosh
bE

2
D . s2.5d

As we shall see below the density of statesRsE2d (which
contains the same information as a set of allLk) is easier to
calculate than the values ofLk or the coefficientsFkn, Ckn.

On the other hand, we may exploit Eqs.(2.2) and(2.3) to
obtain the desired density of statesRsE2d, Eq. (2.4). We note
that the three-diagonal band set of equations(2.2) [or (2.3)]
strongly resembles the one describing displacements of par-
ticles in a nonuniform harmonic chain with nearest neighbor
interactions andRsE2d, Eq. (2.4), plays the role of the distri-
bution of the squared phonon frequencies(for a study of the
phonon density of states in a linear nonuniform system see,
for example, Ref.[22]). The set of equations(2.2) [or (2.3)]
can be also viewed as the one for determining a wave func-
tion of (spinless) electron in the 1D nonuniform tight-
binding model.

To find the density of statesRsE2d from the set of equa-
tions (2.2) [or (2.3)] we use the standard Green function
approach. Consider, for example, Eq.(2.2). Let us introduce
the Green functionsGnm=GnmsE2d which satisfy the set of
equations

sE2 − Vn
2 − In−1

2 dGnm− Vn−1In−1Gn−1,m − VnInGn+1,m = dnm.

s2.6d

Knowing the diagonal Green functionsGnn=GnnsE2d we im-
mediately find the density of statesRsE2d, Eq. (2.4), through
the relation

RsE2d = 7
1

pN
o
n=1

N

Im GnnsE2 ± ied, e → + 0. s2.7d

Alternatively, RsE2d can be obtained with the help of the
Green functions introduced on the basis of the set of equa-
tions for coefficientsCkn, Eq. (2.3). The set of equations for
such Green functions[such as(2.6)] corresponds to the uni-
tary equivalent spin chain[see Eq.(1.2)] which exhibits the
same thermodynamic properties. Thus, the resulting density
of statesRsE2d is the same.

Now we have to calculate the diagonal Green functions
Gnn involved into Eq.(2.7). Let us use the continued fraction
representation forGnn that follows from Eq.(2.6),

Gnn =
1

E2 − Vn
2 − In−1

2 − Dn
− − Dn

+ ,

Dn
− =

Vn−1
2 In−1

2

E2 − Vn−1
2 − In−2

2 −
Vn−2

2 In−2
2

E2 − Vn−2
2 − In−3

2 −
�

,

Dn
+ =

Vn
2In

2

E2 − Vn+1
2 − In

2 −
Vn+1

2 In+1
2

E2 − Vn+2
2 − In+1

2 −
�

. s2.8d

[Note that the signs of exchange interactions and fields are
not important for the thermodynamic quantities as it was
noted above and is explicitly seen from Eq.(2.8).] For any
finite period of varyingVn and In the continued fractions in
Eq. (2.8) become periodic(in the limit N→`) and can be
easily calculated by solving quadratic equations. As a result
we get rigorous expressions for the diagonal Green func-
tions, the density of states(2.7), and the thermodynamic
quantities (2.5) of the periodically alternating spin chain
(1.1). For example, one gets for the internal energye= f
+b]f / ]b , for the entropys/k=b2]f / ]b , or for the specific
heatc/k=−bs] /]bds/k. Assuming thatVn=V+DVn one can
also obtain the transverse magnetizationmz=]f /]V and the
static transverse susceptibilityxz=]mz/]V.

Following the procedure described above, for the periodi-
cally alternating chains of periods 2 and 3 we find the fol-
lowing result forRsE2d:

RsE2d = 5 1

pp

uZp−1sE2du
ÎA2psE2d

if A2psE2d . 0

0 otherwise,

s2.9d

whereZp−1sE2d andA2psE2d=−p j=1
2p sE2−ajd are polynomials

of sp−1dth ands2pdth orders, respectively, and 0øa1ø ¯

øa2p are the roots ofA2psE2d. Moreover,

Z1sE2d = 2E2 − V1
2 − V2

2 − I1
2 − I2

2,

A4sE2d = 4V1
2V2

2I1
2I2

2 − sE4 − sV1
2 + V2

2 + I1
2 + I2

2dE2

+ V1
2V2

2 + I1
2I2

2d2; s2.10d
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Z2sE2d = 3E4 − 2sV1
2 + V2

2 + V3
2 + I1

2 + I2
2 + I3

2dE2 + V1
2V2

2

+ V1
2I2

2 + I1
2I2

2 + V2
2V3

2 + V2
2I3

2 + I2
2I3

2 + V3
2V1

2 + V3
2I1

2

+ I3
2I1

2,

A6sE2d = 4V1
2V2

2V3
2I1

2I2
2I3

2 − fE6 − sV1
2 + V2

2 + V3
2 + I1

2 + I2
2

+ I3
2dE4 + sV1

2V2
2 + V1

2I2
2 + I1

2I2
2 + V2

2V3
2 + V2

2I3
2 + I2

2I3
2

+ V3
2V1

2 + V3
2I1

2 + I3
2I1

2dE2 − V1
2V2

2V3
2 − I1

2I2
2I3

2g2.

s2.11d

Equations(2.9)–(2.11) recover the result for the uniform
chain if Vn=V, In= I as it should be. The obtained density of
states forp=2, Eqs.(2.9) and (2.10), can be compared with
the exact calculation for the anisotropicXY chain in a trans-
verse field reported in Ref.[10]. Such a spin chain is repre-
sented by noninteracting spinless fermions with the energies
L±sqd given by Eq.(2.22) of that paper. The density of states,
(2.4) has the formRsE2d=s1/2pdon=±e−p/2

p/2 dqdfE2−Ln
2sqdg

and for the transverse Ising chain of period 2 after a simple
integration it transforms into Eqs.(2.9) and (2.10).

The density of statesRsE2d Eq. (2.4), yields valuable in-
formation about the spectral properties of the Hamiltonian
(1.1). Thus, the gapD in the energy spectrum of the spin
chain is given by the square root of the smallest roota1 of
the polynomialA2psE2d. In Fig. 1 we display the dependence
of the energy gap on the transverse field[33] for some chains
of periods 2 and 3. The vanishing gap indicates quantum
phase transition points[4]. As can be seen from the data
reported in Fig. 1 the number of such quantum phase transi-
tion points for a given period of alternation is strongly pa-
rameter dependent. The chains of period 2 may become gap-
less either at one, two, three, or four values of the transverse

field, whereas the chains of period 3 may become gapless
either at one, two, three, four, five, or six values of the trans-
verse field depending on the specific set of the Hamiltonian
parameters. The condition for the vanishing gap follows
from A4s0d=0, Eq.(2.10), [A6s0d=0, Eq.(2.11)] and for the
chains of period 2 (3) it reads V1V2= ± I1I2sV1V2V3

= ± I1I2I3d. In fact we have rederived with the help of contin-
ued fractions the long known condition for the existence of
the zero-energy excitations in the inhomogeneous spin-1

2
transverse Ising chain[23] which in our notations has the
form

V1V2 ¯ VN = ± I1I2 ¯ IN. s2.12d

[Notice, that Eq.(6) of Ref. [23] does not contain two signs;
the minus sign follows from the symmetry arguments after
performing simple rotations of spin axes. It is important, as
will be seen below, to have two signs in Eq.(2.12).] Obvi-
ously, for periodic chains we have the products of onlyp
multipliers in the left-hand side and right-hand side of Eq.
(2.12).

For a chain of period 2 with a uniform transverse field Eq.
(2.12) yields either one critical fieldV* =0 if either I1 or I2
(or both) equals to zero or two critical fieldsV* = ±ÎuI1I2u. If
the transverse field becomes regularly varying,V1,2
=V±DV, DV.0, there may be either two critical fields
V* = ±ÎDV2+ uI1I2u if DV,ÎuI1I2u, or three critical fields
V* =h±Î2u I1I2u ,0j if DV=ÎuI1I2u, or four critical fieldsV*

= ±ÎDV2± uI1I2u if DV.ÎuI1I2u [see Fig. 1(a)]. As a result a
chain of period 2 withDV,ÎuI1I2u, asV varies, exhibits two
phases: the Ising phase(for uV u ,ÎDV2+ uI1I2u) and the para-
magnetic phase(for uV u .ÎDV2+ uI1I2u). A chain of period 2
with DV=ÎuI1I2u, asV varies, also exhibits two phases: the
Ising phase(for 0, uV u ,Î2u I1I2u) and the paramagnetic

FIG. 1. The energy gapD vs
transverse fieldV for transverse
Ising chains of periods 2[panel
(a)] and 3 [panels (b)–(d)] [Vn

=V+DVn, on=1
p DVn=0, In=1;

DV2=DV1 (b), DV2= 1
2DV1 (c),

DV2=−DV1 (d)]. The bold curves
D vs V correspond to the follow-
ing values of parameters:DV1

=0.5,1,1.5[panel(a)]; DV1=0.5,
DV1<0.630,DV1=1 [panel(b)];
DV1=0.5, DV1<0.848, DV1

=1.5, DV1<1.921 [panel (c)];
and DV1=1, DV1<1.375, DV1

=2 [panel(d)]. The bold curves in
the planeV-DV1 indicate the val-
ues of parameters which yield the
zero-energy gap,D=0.
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phase(for uV u .Î2u I1I2u); moreover, in the Ising phase at
V=V* =0 the system exhibits a weak singularity in the
ground-state quantities(see below). A chain of period 2 with
DV.ÎuI1I2u, asV varies, exhibits three phases: the low-field
paramagnetic phase(for uV u ,ÎDV2− uI1I2u), the Ising phase
(for ÎDV2− uI1I2u, uV u ,ÎDV2+ uI1I2u), and the high-field
paramagnetic phase(for uV u .ÎDV2+ uI1I2u). A motivation to
give such names to different phases follows from the behav-
ior of the Ising magnetizationmx to be discussed below in
Sec. III.

For a chain of period 3(V1,2,3=V+DV1,2,3, DV1+DV2
+DV3=0) the critical fields follow from two cubic equations

sV* + DV1dsV* + DV2dsV* + DV3d ± I1I2I3 = 0,

s2.13d

each of which may have either one real solution or three real
solutions. In Fig. 2 we display the regions inDV1-DV2 plane
for the set of parameters of the transverse Ising chains with
uI1I2I3u=1 which yield two(dark region), four (gray region),
or six (light region) values of the critical field. For the set of
parameters at the boundary between dark and gray(gray and
light) regions there are three(five) critical fields; for the set
of parameters where dark, gray, and light regions meet there
are four critical fields. The behavior of the energy gap for all
cases can be seen in Figs. 1(b)–1(d). As a result the chain of
period 3 depending on a relation betweenDV1, DV2, DV3
may exhibit either two phases(the Ising and paramagnetic
phases), or four phases(two Ising and two paramagnetic
phases), or six phases(three Ising and three paramagnetic
phases). Moreover, weak singularities in the Ising phases
may occur.

III. THE GROUND-STATE AND THERMODYNAMIC
PROPERTIES

A. The ground-state magnetic properties: Transverse Ising
chain versus transverseXX chain

The transverse magnetization and the static transverse
susceptibility for a regularly alternating transverse Ising
chain can be obtained using continued fractions as was ex-
plained in Sec. II. Such results for some typical chains of
period 3 [which roughly correspond to the parameters
singled out in Figs. 1(b)–1(d)] at zero temperature are re-
ported in Fig. 3. Let us compare and contrast the results for
the magnetic properties of the transverse Ising and the trans-
verseXX chains.

We start from the energy gap. It is known that the uniform
transverse Ising chain becomes gapless at critical fieldV*

= ± uI u. The gap decays linearly while the transverse field ap-
proaches the critical value,D,e, e= uV−V* u→0. The trans-
verse XX chain is gapless along the critical line −uI uøV
ø uI u. The gap opens linearly while the value of transverse
field exceedsuI u. If regular inhomogeneity is introduced into
the transverseXX chain the critical line splits into several
parts; the gaps open linearly as the transverse field runs out
the critical lines[24]. On the contrary, a regular inhomoge-
neity introduced into the transverse Ising chain may either
only shift the values of critical fields or lead to the appear-
ance of new critical points. Moreover, the gap decays either
linearly, D,e, or proportionally to the deviation from the
critical value squared,D,e2, as can be seen in Fig. 1(see
also below).

The energy gap behavior determines the zero-temperature
transverse magnetization curves for both chains. Transverse
XX chains exhibit plateaus which can be easily understood
within the frames of fermionic picture. Indeed, a regularly
alternating transverseXX chain corresponds to a system of
free fermions with several energy bands and the transverse
field plays the role of the chemical potential. Transverse
Ising chains do not exhibit plateaus; however, being in the
paramagnetic phases exhibit plateaulike steps[compare the
curves in Figs. 3(a)–3(c) and 1(b)–1(d)]. In the Ising phases
the transverse magnetization shows a rapid change. In the
fermionic picture a regularly alternating transverse Ising
chain again corresponds to a system of free fermions with
several energy bands; however, the transverse field does not
play the role of the chemical potential any more.

The described behavior of the transverse magnetization vs
transverse field is accompanied by the corresponding pecu-
liarities in the behavior of the static transverse susceptibility
vs transverse field. Thus, in the cases of the transverseXX
chain the square-root singularities indicate the gapless-to-
gapped transitions[Figs. 3(j)–3(l)]. In the case of the trans-
verse Ising chain a linear gap decay produces a logarithmic
singularity [Figs. 3(d)–3(f)], whereas for a decay propor-
tional to the squared deviation from the critical value the
static transverse susceptibility does not diverge containing,
however, a nonanalytical contribution which causes a loga-
rithmic singularity of its second derivative[short-dashed and
long-dashed-dotted curves in Figs. 3(d)–3(f)].

To end up, we emphasize that for the regularly alternating
transverseXX chains the number of peculiarities(e.g., in the

FIG. 2. Phase diagram of the transverse Ising chain of period 3
with uI1I2I3u=1, V1,2,3=V+DV1,2,3, andDV1+DV2+DV3=0. AsV
varies the energy gap vanishes two/four/six times if the set of pa-
rameters is in the dark/gray/light region. The sets of parameters
denoted bya– f are used below to illustrate the dependence onV of
the ground-state Ising magnetization(Fig. 5) and the low-
temperature specific heat(Fig. 7).
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dependencexz vs V) depends only on the period of alterna-
tion and equals 2p. This is not the case for the regularly
alternating transverse Ising chains: the number of peculiari-
ties cannot exceed 2p but may be smaller; the actual number
of peculiarities and their type essentially depends on the spe-
cific set of the Hamiltonian parameters. Let us also underline
a similarity of these results with what has been found for the

anisotropic/isotropic XY models on 1D superlattices
[13,14,25].

B. The ground-state magnetic properties: Quantum chain
versus classical chain

To demonstrate the role of quantum effects in the zero-
temperature magnetization processes we consider the classi-

FIG. 3. The ground-state transverse magnetizationa–c,g–i and static transverse susceptibilityd– f , j –l curves for transverse Ising(a–f)
and transverseXX (g–l) chains of periodp=3. I1,2,3=1, V1,2,3=V+DV1,2,3, DV1+DV2+DV3=0. (a), (d), (g), (j): DV2=DV1, DV1=0 (solid
curves), DV1=0.5 (long-dashed curves), DV1=0.6 (short-dashed curves), DV1=1 (dotted curves). (b), (e), (h), (k): DV2= 1

2DV1, DV1=0
(solid curves), DV1=0.5 (long-dashed curves), DV1=0.85 (short-dashed curves), DV1=1.5 (dotted curves), DV1=1.9 (long-dashed-dotted
curves); (c), (f), (i), (l): DV2=−DV1, DV1=0 (solid curves), DV1=1 (long-dashed curves), DV1=1.35 (short-dashed curves), DV1=2
(dotted curves).
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cal counterparts of regularly alternating transverse Ising and
transverseXX chains (some calculations of the thermody-
namic quantities of the uniform classical spin chains can be
found in Ref. [26]). The classical spin model consists of
classical spins (vectors) s=ss,u ,fd (0øuøp and 0
øf,2p are the spherical coordinates of the spin) on a ring
which interact with each other and an external field and are
governed either by the Hamiltonian

H = o
n=1

N

Vns cosun

+ o
n=1

N

2Ins
2 sin un sin un+1 cosfn cosfn+1 s3.1d

(transverse Ising chain) or by the Hamiltonian

H = o
n=1

N

Vns cosun + o
n=1

N

2Ins
2 sin un sin un+1cossfn − fn+1d

s3.2d

(transverseXX chain). In Eqs.(3.1) and (3.2) s is the value
of the spin which plays only a quantitative role(further
we put s=1/2) and the sequence of parameters for a
regularly alternating chain of periodp is again
I1V1I2V2¯ IpVpI1V1I2V2¯ IpVp¯. In what follows we re-
strict ourselves to the caseIn= I, Vn=V+DVn, on DVn=0
which has already been discussed in some detail above. Our
goal is to examine the effect of regular inhomogeneity on the
ground-state properties of the classical transverse Ising and
transverseXX chains.

Consider at first the transverse Ising chain. One can easily
construct the ground-state spin configuration and the corre-
sponding ground-state energy ansatz. According to Eq.(3.1)
to minimize the ground-state energy one should place all
spins in xz plane [i.e., fn=fn+1=¯ =0spd if I ,0 or fn

=fn+2=¯ =0spd, fn+1=fn+3=¯ =ps0d if I .0]. More-
over, the anglesun are determined to minimize the sum of
the contribution coming from the interaction with the trans-
verse field and of the contribution coming from the intersite
interaction taking into account the period of inhomogeneity.
Thus, for the chain of periodp, an ansatz for the ground-state
energy per site reads

Esu1, . . . ,upd
N

=
s

p
o
n=1

p

Vncosun −
2uI us2

p
o
n=1

p

sin un sin un+1,

s3.3d

and the anglesun are determined from the set of equations

]

] un

Esu1, . . . ,upd
N

= 0,n = 1, . . . ,p. s3.4d

Substituting the solution of Eq.(3.4) (which yields the low-
est ground-state energy) into Eq. (3.3) we get the ground-
state energy of the chain. Now the ground-state on-site mag-
netizations are given bymn

z=s cosun, mn
x=s sin uncosfn.

We can also find the ground-state on-site static transverse
susceptibilityxn

z=]mn
z /]V.

Let us turn to the transverseXX chain (3.2). In the
ground-state spin configuration the spin components inxy
plane are directed arbitrarily but coherently at all sites having
the valuesumn

'u=s sin un [i.e., fn=fn+1=¯ =f (f is an ar-
bitrary angle) if I ,0 or fn=fn+2=¯ =fs0øf,pd, fn+1

=fn+3=¯ =f+p if I .0]. An ansatz for the ground-state
energy per site is again given by Eq.(3.3) and the anglesun
are determined from Eq.(3.4). Moreover,mn

z=s cosun and
xn

z=]mn
z /]V.

For the chain of period 1 from Eq.(3.4) one easily finds
u=0 if v=V /4suI u,−1, u=arccoss−vd if −1 øv,1, and
u=p if 1 øv. For the chain of period 2 from Eq.(3.4) in
addition to four obvious solutions cos2 u1=cos2 u2=1 one
gets one more solution

cos2u1 = sv + dd21 + sv − dd2

1 + sv + dd2 ,

cos2u2 = sv − dd21 + sv + dd2

1 + sv − dd2;

d =
DV

4suI u
s3.5d

if uv2−d2uø1. For the chain of period 3 Eq.(3.4) has again
obvious solutions cos2 u1=cos2 u2=cos2 u3=1; another solu-
tion existing at a certain range of the transverse field can be
found numerically[see Figs. 4(j)–4(l)]. The described ana-
lytical calculations reproduce the results obtained earlier nu-
merically for some chains of periods 2 and 3(dashed curves
in Figs. 8(a) and 8(b) of Ref. [24]).

In Figs. 4(a)–4(i) we display the obtained dependences of
the ground-state magnetizationsmz, mx and static transverse
susceptibilityxz on the transverse field for several classical
transverse Ising/XX chains of period 3(the results for corre-
sponding quantum chains are shown in Fig. 3). In contrast to
the quantum case, the ground-state static transverse suscep-
tibility xz of the classical chains remains always finite as the
transverse fieldV varies and hence the classical chains do
not exhibit any ground-state phase transitions driven byV.
However, a regularly alternating classical chain similar to its
quantum sXXd counterpart may exhibit plateaus in the
ground-state dependence transverse magnetizationmz vs
transverse fieldV [compare long-dashed-dotted curves in
Figs. 4(b) (classical chain) and 3(h) (quantum chain) which
have a plateau −mz= 1

6]. Obviously, asmz remains constant
with varying V, the static transverse susceptibility is zero
[long-dashed-dotted curves in Fig. 4(e)]. Moreover,mn

xsmn
'd,

n=1,2,3, in this region is zero[Fig. 4(h)] and the stable
ground-state spin configuration isun=un+1=p, un+2=0 [see
Fig. 4(l)]. The Ising magnetizationmx decays as the system
runs out the Ising phase according to the power law,mx

,uV* −Vub, with b= 1
2.

C. Quantum phase transitions

Let us have a closer look at the quantum phase transitions
in regularly alternating transverse Ising chains discussing in
some detail the critical behavior. For such a chain of periodp
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the quantum phase transition points are determined by Eq.
(2.12). The effects of regular alternation on the number and
position of the quantum phase transition points in the cases
p=2 andp=3 were analyzed in Sec. II. Although Eq.(2.12)

was found many years ago[23] it was not discussed in the
context of the quantum phase transition theory. In particular,
an important questionhow the gap vanishes as the set of
parameters becomes critical was not considered in Ref.[23].

FIG. 4. The ground-state transverse magnetization(a–c), Ising magnetization(g–i), and static transverse susceptibility(d–f) curves for the
classical transverse Ising/XX chains of periodp=3. I1,2,3=−1, V1,2,3=V+DV1,2,3, DV1+DV2+DV3=0. (a), (d), (g): DV2=DV1, DV1=0
(solid curves), DV1=0.5 (long-dashed curves), DV1=0.6 (short-dashed curves), DV1=1 (dotted curves). (b), (e), (h): DV2= 1

2DV1, DV1

=0 (solid curves), DV1=0.5 (long-dashed curves), DV1=0.85 (short-dashed curves), DV1=1.5 (dotted curves), DV1=1.9 (long-dashed-
dotted curves). (c), (f), (i): DV2=−DV1, DV1=0 (solid curves), DV1=1 (long-dashed curves), DV1=1.35 (short-dashed curves), DV1=2
(dotted curves). We also show the ground-state spin configurationsu1, u2, u3 (the corresponding curves are denoted by 1, 2, 3) for the chains
with DV2= 1

2DV1 [see panels(b), (e), (h)] andDV1=0.85 (j), DV1=1.5 (k), DV1=1.9 (l) asV varies.
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Below we show that two types of critical behavior are pos-
sible: one as it occurs for the second-order phase transition
(in Ehrenfest’s sense) and another one as it occurs for a
weaker singularity (the fourth-order phase transition in
Ehrenfest’s sense). These findings are confirmed by numeri-
cal computations of the two-site spin correlation functions.

First we analyze how the gap vanishes as the set of pa-
rameters becomes critical for the casep=2 when V*

= ±ÎDV2± uI1I2u. Equation(2.10) yields

D2sVd <
sV2 − V*2d2

2SV2 + DV2 +
I1
2 + I2

2

2
D . s3.6d

If uV−V* u=e→0 andV* Þ0 Eq. (3.6) suggestsD2sVd,e2,
i.e., the energy gap vanishes linearly[see Fig. 1(a)]. A linear
decay of the energy gap can be also seen in many cases in
Figs. 1(b)–1(d) for chains of period 3. The linearly vanishing
gap corresponds to the square-lattice Ising model universal-
ity class for critical behavior. In particular, owing to such a
decay ofD the ground-state energy per site in the vicinity of
V* has the form

e0 = −E
0

`

dEE2RsE2d=−
1

pp
EÎe2

Îa2
dEE2 fsE2d

ÎE2 − e2

+ analytical with respect toe2 terms. s3.7d

Here the first term is a contribution of the lowest energy
band and the explicit expression forfsE2d is not important
for the analysis of nonanalytical behavior ase→0. The first
term in Eq.(3.7) is proportional toe2 ln e and as a result the
zero-temperature dependence ofmz andxz on V contains the
nonanalytical termssV−V*dln uV−V* u and lnuV−V* u, re-
spectively.

Let us turn to the casep=2 with DV=ÎuI1I2u when we
have three critical fieldsV* =h±Î2uI1I2u ,0j and consider the
behavior ofDsVd in the vicinity of V* =0, i.e., asV→0.
From Eq.(3.6) one finds thatD2sVd,e4. Repeating the cal-
culation of the ground-state energy[see Eq.(3.7)] for such a
decay ofD one finds thate0 contains the terme4 ln e and
hence the system exhibits the fourth-order(in Ehrenfest’s
sense) quantum phase transition atV* =0 which is character-
ized by a logarithmic divergence of the second derivative of
the susceptibility]2xz/]V2. (For an example of a fourth-
order thermal phase transition see Ref.[27].) For p=3 the
dependenceDsVd,e2 [see Figs. 1(b)–1(d)] may occur for
the sets of parameters at the boundaries between different
regions in Fig. 2(e.g., at the pointsb, c, ande). Such sys-
tems again show the fourth-order quantum phase transition
behavior while approaching the corresponding critical fields.

To discuss further the quantum phases which occur as the
transverse field varies we examine the spin correlation func-
tions ksn

asn+l
a l. Unfortunately, we cannot obtain the spin cor-

relation functions of a regularly alternating transverse Ising
chain using the continued fraction approach which is re-
stricted to the quantities that can be expressed through the
density of states(2.4). However, the spin correlation func-
tions can be determined numerically(see, for example, Ref.

[28]) for rather long chains of several thousand sites. Know-
ing ksn

asn+l
a l we can obtain the on-site magnetizationmn

a2

= limr→`ksn
asn+rp

a l. Assuming thatksn
asn+rp

a l−ksn
alksn+rp

a l de-

cays assrpd−ga
exp s−rp /jad if r →` we can also find the

correlation lengthja and the power-law exponentga. In our
calculations forp=3 we consider chains withN=2100, take
n=500,rp=999 to determineumj

xu andrp=60, . . . ,360 to de-
terminejx and gx. Our findings are collected in Fig. 5. To
illustrate the critical behavior of the order parameter in detail
we also consider a chain of period 2 withuI1u= uI2u=1, V1,2
=V±1 taking N=2000,4000,5400,n=N/4, rp=N/2. The
zero-temperature dependencesumj

xu vs V for this chain are
reported in Fig. 6.

As can be seen from Figs. 5 and 6 the behavior of the
Ising magnetizationmx (which plays the role of the order
parameter) indicates the different phases(Ising phase ifmx

Þ0 or paramagnetic phase ifmx=0) and the phase transi-
tions between them. For a set of parameters which yields
weak singularities[i.e., mx=0 in the Ising phase, see Figs.
5(b), 5(c), 5(e), 6(a), and 6(b)] the finite-size effects are
strong and the finite-chain result forx magnetization tends to
zero very slowly with increasingN [compare data for differ-
entN in Fig. 6(b)]. For the second-order(fourth-order) quan-
tum phase transition points the critical behavior is given by
mx,uV* −Vub with b= 1

8
sb= 1

4
d [compare Figs. 6(c) and

6(b)]. The appearance/disappearance of the Ising magnetiza-
tion is accompanied by a divergence of the correlation length
jx= uV−V* u−n with n=1sn=2d for the second-order(fourth-
order) quantum phase transition points[Figs. 5(g)–5(l)]. Tak-
ing into account the values of the exponent characterizing the
energy gap behavior we conclude that the relaxation time
scales like the first power of the correlation length, i.e., the
dynamic exponentz=1, for both the second-order and the
fourth-order quantum phase transitions. AtV=V* thexx spin
correlation functions show power-law decay with the expo-
nent gx= 1

4 for both the second-order and the fourth-order
quantum phase transitions[Figs. 5(m)–5(r)]. Finally, the re-
sults for spin correlation functions at special values of the
transverse fieldV, i.e., when one on-site field equals zero,
coincide with the analytical predictions obtained using the
three-site cluster Hamiltonian eigenvectors(for a chain of
period 2 the corresponding calculations are given in Ref.
[29]). For example, for the chain of period 3 withI1= I2= I3
=1, DV1=1, DV2=0, DV3=−1 at V=−1 we have found
um1

xu= 1
2 , um2

xu<0.417,um3
xu<0.331[see Fig. 5(a)] whereas for

such a chain withDV1=2, DV2=0, DV3=−2 at V=−2 we
have foundum1

xu= 1
2 , um2

xu<0.267 andum3
xu<0.175 [see Fig.

5(f)]. It should be noted that the Ising magnetization at the
sites with zero transverse fields has its maximal value1

2.
Probably the most spectacular feature of the Ising chain with
regularly alternating transverse field is the reentrant behavior
with varying V nicely seen in Figs. 5(d)–5(f). The appear-
ance of the paramagnetic phase at intermediate values of the
transverse field whenx magnetization is zero andz magne-
tization is almost constant can be associated with the follow-
ing classical picture. Assume, for example,p=2 andV=0;
then owing to the regularly varying on-site transverse fields
±DV with largeDV all on-site magnetizations are directed in
±z direction in the spin space. Naturally, this picture may
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play only an auxiliary role for the considered quantum sys-
tems.

Finally we note that our results are in agreement with the
scaling relations in the theory of conventional(temperature-
driven) phase transitions[30]. Thus, the quantum phase tran-
sition in dimensiond=1 corresponds to the thermal phase
transition in dimensiond+z=2, the exponentn which char-
acterizes the divergence of the correlation lengthj,uT
−Tcu−n characterizes the decay of the energy gapD,uV
−V* un, and the exponenta characterizing the divergence of
the specific heatc,uT−Tcu−a characterizes the divergence of
the transverse susceptibilityxz,uV−V* u−a. Moreover, a
number of scaling relations(which do not account for loga-
rithmic divergences) hold. For example, 2−a=dn. Substitut-

ing d=2, n=1 one getsa=0, i.e., only a logarithmic diver-
gence in the dependencexz vs V, whereas for more rapidly
decaying energy gap whenn=2 one findsa=−2, i.e.,xz does
not diverge atV* (and only its second derivative exhibits a
logarithmic peculiarity).

D. Temperature behavior of the specific heat

We turn to a discussion of the effects of regular alterna-
tion on the temperature dependence of the specific heat. The
low-temperature behavior of this quantity is determined by
the fact whether the system is gapped or gapless. Thus, the
zero-energy excitations immediately produce a linear depen-
dence of the specific heat on temperature. As a result the

FIG. 5. The ground-statex magnetizationmx= 1
3sum1

xu+ um2
xu+ um3

xud (a–f), inverse correlation length 1/jx (g–l), and gx (m–r) for the
transverse Ising chain of period 3 withuI1u= uI2u= uI3u=1, V1,2,3=V+DV1,2,3, DV1+DV2+DV3=0, DV1=1, DV2=0 (V* <h±1.325j) (a,g,m);
DV1=1, DV2<0.292 sV* <h−1.355,0.678,1.513jd (b,h,n); DV1= s 27

4
d1/6<1.374, DV2=0 sV* <h±0.794, ±1.587jd (c,i,o); DV1= s 27

4
d1/6

<1.374, DV2=−1 sV* <h−1.574,−1.020,−0.348,1.367jd (d,j,p); DV1=2, DV2<−1.575 sV* <h−2.107,−1.874,0.102,1.054,1.772jd
(e,k,q); andDV1=2, DV2=0 sV* <h±0.254, ±1.861, ±2.115jd (f,l,r). Connecting curves are guides to the eye. The taken sets of parameters
are in correspondence with the points(a–f) in Fig. 2.

FIG. 6. The ground-state sublatticex magnetizationsumj
xu, j =1,2 (triangles) andmx= 1

2sum1
xu+ um2

xud (squares, diamonds, circles) for the
transverse Ising chain of period 2 withuI1u= uI2u=1, V1,2=V±1. Connecting curves in panel(a) are guides to the eye. We also report the
results for the dependencemx vs V in the vicinity of the critical pointsV* =0 (b) andV* =Î2 (c) [squares, diamonds, circles correspond to
data forN=2000,4000,5400, respectively, solid lines represent dependences,V1/4 (b) and,sÎ2−Vd1/8 (c)].
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low-temperature behavior of the specific heat indicates the
quantum phase transition points that can be seen in Fig. 7 in
complete agreement with the outcomes which follow from
the behavior of thexx spin correlation functions shown in
Fig. 5. Moreover, we notice that the regular alternation may
produce many-peak structure of the temperature profiles of
the specific heat(Fig. 7).

IV. ANISOTROPIC XY CHAIN WITHOUT FIELD:
SPIN-PEIERLS DIMERIZATION

As a byproduct of the study of regularly alternating trans-
verse Ising chains we obtain the thermodynamic quantities of
regularly alternating anisotropicXY chains without field
(1.3). Really, using the unitary transformations discussed at
the end of Sec. I we can state that the Helmholtz free energy
of the regularly alternating anisotropicXY chain without
field (1.3) defined by a sequence of parameters
I1
xI1

yI2
xI2

y
¯ Ip

xIp
yI1

xI1
yI2

xI2
y
¯ Ip

xIp
y
¯ is given by Eq. (2.5) with

RsE2d, Eq. (2.7), and the diagonal Green functions involved
into Eq. (2.7) are determined as follows:

Gnn =
1

E2 − In−1
x 2 − In

y2 − Dn
− − Dn

+ ,

Dn
− =

In−2
y 2In−1

x 2

E2 − In−3
x 2 − In−2

y 2 −
In−4
y 2In−3

x 2

E2 − In−5
x 2 − In−4

y 2−
�

,

Dn
+ =

In
y2In+1

x 2

E2 − In+1
x 2 − In+2

y 2 −
In+2
y 2In+3

x 2

E2 − In+3
x 2 − In+4

y 2−
�

. s4.1d

Moreover, we may use the obtained densities of states
(2.9)–(2.11) to find the thermodynamic quantities of some
regularly alternating anisotropicXY chains. Thus, the aniso-
tropic XY chain of period 2 is unitary equivalent to two dif-
ferent transverse Ising chains both of period 1 and as a result

RsE2d = 5 1

2p

1

ÎAxysE2d
if AxysE2d . 0

0 otherwise

+ 5 1

2p

1

ÎAyxsE2d
if AyxsE2d . 0,

0 otherwise,

AabsE2d = − fE2 − sI1
a − I2

bd2gfE2 − sI1
a + I2

bd2g. s4.2d

(Note that for the isotropic caseI1
x= I1

y= I1, I2
x= I2

y= I2, Eq.
(4.2) yields the result obtained in Ref.[24] [Eqs.(9)–(11) of
that paper]; in the anisotropic case Eq.(4.2) agrees with the
result reported in Ref.[10].) The anisotropicXY chain of
period 3 after performing the above mentioned unitary trans-
formations is equivalent to two identical transverse Ising
chains of period 3 and, therefore,RsE2d is given by Eqs.
(2.9) and (2.11) after the substitutionV1→ I1

y, I1→ I2
x, V2

→ I3
y, I2→ I1

x, V3→ I2
y, and I3→ I3

x. Let us also note that the
anisotropicXY chains of period 4(6) are unitary equivalent
to two different transverse Ising chains of period 2(3) and
hence after simple substitutions Eqs.(2.9) and (2.10) [Eqs.
(2.9) and(2.11)] yield the thermodynamic properties of such
chains.

Let us use the ground-state energy per sitee0=
−2e0

` dEE2RsE2d of the anisotropicXY chain of period 2 to
examine the effects of the exchange interaction anisotropy on

FIG. 7. The low-temperature behavior of the specific heat for the transverse Ising chain of period 3 withuI1u= uI2u= uI3u=1, V1,2,3=V
+DV1,2,3, DV1+DV2+DV3=0, DV1=1, DV2=0 (a), DV1=1, DV2<0.292 (b), DV1<1.374, DV2=0 (c), DV1<1.374, DV2=−1 (d),
DV1=2, DV2<−1.575(e), andDV1=2, DV2=0 (f).
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the spin-Peierls dimerization inherent in the isotropicXY
chain [31,32]. For this purpose we assume in Eq.(4.2) I1

x

=s1+dds1+gd, I1
y=s1+dds1−gd, I2

x=s1−dds1+gd, I2
y=s1−dd

3s1−gd where 0ød,1 is the dimerization parameter and
0øgø1 is the exchange interaction anisotropy parameter.
We consider the total energy per siteEsdd and its dependence
on d. Esdd consists of the magnetic parte0sdd and the elastic
partad2. Let us recall that in the isotropic limitg=0 the total
energyEsdd exhibits a minimum at a nonzero value of the
dimerization parameterd* Þ0 which is a manifestation of
lattice instability with respect to spin-Peierls dimerization
[31]. In the other limiting caseg=1 the magnetic energy
does not depend ond and hence the uniform lattice is stable.
In Fig. 8(a) one can see how the behavior ofEsdd vs d varies
as g increases from 0 to 0.4 fora=0.5. At g=0 the total
energyEsdd exhibits a minimum at a nonzero value of dimer-
ization parameterd* Þ0. As g increases the dependence re-
mains qualitatively the same with, however, slightly decreas-
ing value ofd* [see Figs. 8(b) and 8(c)]. At a certain value of
anisotropy parametergA an additional minimum atd=0 ap-
pears. Both minima are separated by a maximum, and the
minimum atd* Þ0 remains the deeper one. At the value of
gBs.gAd the minima have the same depth and with further
increase ofg the minimum atd=0 becomes the deeper one.
If g exceedsgCs.gBd the minimum for a nonzero dimeriza-
tion parameter disappears. In Fig. 8(b) one can see the be-
havior ofd* asg varies from 0 to 0.4 for differenta’s [solid
curves; the dashed curves show the behavior of the maxi-
mum in the dependenceEsdd vs d]; in Fig 8(c) one can see
the dependence ofd* on g for a=0.4,0.5,0.6. The bold dots
in the curves in this panel correspond to the characteristic
values of the anisotropy parametergA,gB,gC discussed
above. The effect of the anisotropy on the spin-Peierls dimer-

ized phase occurs according to the first-order phase transition
scenario. The corresponding phase diagram is shown in Fig.
8(d) where we indicate the region of stability of the dimer-
ized sAd and uniformsCd phases as well as the metastable
region (regionsB1 andB2) where both phases may coexist.

It is interesting to compare the described effects of the
exchange interaction anisotropy on the spin-Peierls dimer-
ized phase with the effects of the transverse field on the
spin-Peierls dimerized phase[24,32]. Similar to the aniso-
tropy g the transverse fieldV destroys the dimerized phase
according to a first-order phase transition scenario. However,
the value of the dimerization parameterd* remains un-
changed asV increases up toVC.

V. CONCLUDING REMARKS

In this work we have analyzed in some detail the ground-
state and thermodynamic properties of regularly alternating
spin-12 transverse Ising chains and anisotropicXY chains
without field. Due to the Jordan-Wigner mapping and the
continued fraction approach we can calculate the thermody-
namic quantities rigorously analytically. For certain values of
parameters we can also calculate the ground-state spin cor-
relation functions. For other values of parameters we have
calculated the spin correlation functions numerically for long
chains consisting of a few thousand sites. We have shown
how the ground-state properties of regularly alternating clas-
sical transverse Ising/XX chains can be examined. The main
results obtained are as follows. First, we have examined the
effects of regular alternation on quantum phases and quan-
tum phase transitions in the transverse Ising chain. Owing to
regularly alternating parameters the number of quantum
phase transition may increase(but never exceeds 2p wherep

FIG. 8. The total ground-state energy
per site Esdd vs dimerization parameterd (a
=0.5, from bottom to top g
=0,0.025,0.05,0.1,0.15,0.2,0.4) (a), the dimer-
ization parameterd* vs a (from right to left g
=0,0.025,0.05,0.1,0.15,0.2,0.4) (b), the dimer-
ization parameterd* vs. g [from top to bottom
a=0.4,0.5,0.6; the meaning of the characteristic
values of the anisotropy parametergA, gB, gC

(denoted fora=0.5) is explained in the main
text] (c), and the phase diagram in the planea
-g [in the regionAsCd the dimerized(uniform)
phase occurs; in the regionsB1, B2 both phases
are possible although in the regionB1sB2d the
dimerized(uniform) phase is favorable] (d).
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is the period of alternation), and the critical behavior remains
as in the uniform chain, however, a weaker singularity may
also appear. Second, we have demonstrated how the plateaus
in the ground-state magnetization curves for the classical
regularly alternating transverse Ising/XX chains may
emerge. Third, we have shown how the exchange interaction
anisotropy destroys the spin-Peierls dimerization inherent in
the spin-12 isotropicXY chain. The performed study provides
a set of reference results which may be useful for under-
standing more complicated quantum spin chains.
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